SwapMukham1 / face_swapper.py
Suniilkumaar's picture
Duplicate from bluefoxcreation/SwapMukham
0fc4c70
raw
history blame
5.54 kB
import time
import torch
import onnx
import cv2
import onnxruntime
import numpy as np
from tqdm import tqdm
import torch.nn as nn
from onnx import numpy_helper
from skimage import transform as trans
import torchvision.transforms.functional as F
import torch.nn.functional as F
from utils import mask_crop, laplacian_blending
arcface_dst = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]],
dtype=np.float32)
def estimate_norm(lmk, image_size=112, mode='arcface'):
assert lmk.shape == (5, 2)
assert image_size % 112 == 0 or image_size % 128 == 0
if image_size % 112 == 0:
ratio = float(image_size) / 112.0
diff_x = 0
else:
ratio = float(image_size) / 128.0
diff_x = 8.0 * ratio
dst = arcface_dst * ratio
dst[:, 0] += diff_x
tform = trans.SimilarityTransform()
tform.estimate(lmk, dst)
M = tform.params[0:2, :]
return M
def norm_crop2(img, landmark, image_size=112, mode='arcface'):
M = estimate_norm(landmark, image_size, mode)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
return warped, M
class Inswapper():
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']):
self.model_file = model_file
self.batch_size = batch_size
model = onnx.load(self.model_file)
graph = model.graph
self.emap = numpy_helper.to_array(graph.initializer[-1])
self.session_options = onnxruntime.SessionOptions()
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers)
def forward(self, imgs, latents):
preds = []
for img, latent in zip(imgs, latents):
img = img / 255
pred = self.session.run(['output'], {'target': img, 'source': latent})[0]
preds.append(pred)
def get(self, imgs, target_faces, source_faces):
imgs = list(imgs)
preds = [None] * len(imgs)
matrs = [None] * len(imgs)
for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)):
matrix, blob, latent = self.prepare_data(img, target_face, source_face)
pred = self.session.run(['output'], {'target': blob, 'source': latent})[0]
pred = pred.transpose((0, 2, 3, 1))[0]
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1]
preds[idx] = pred
matrs[idx] = matrix
return (preds, matrs)
def prepare_data(self, img, target_face, source_face):
if isinstance(img, str):
img = cv2.imread(img)
aligned_img, matrix = norm_crop2(img, target_face.kps, 128)
blob = cv2.dnn.blobFromImage(aligned_img, 1.0 / 255, (128, 128), (0., 0., 0.), swapRB=True)
latent = source_face.normed_embedding.reshape((1, -1))
latent = np.dot(latent, self.emap)
latent /= np.linalg.norm(latent)
return (matrix, blob, latent)
def batch_forward(self, img_list, target_f_list, source_f_list):
num_samples = len(img_list)
num_batches = (num_samples + self.batch_size - 1) // self.batch_size
for i in tqdm(range(num_batches), desc="Generating face"):
start_idx = i * self.batch_size
end_idx = min((i + 1) * self.batch_size, num_samples)
batch_img = img_list[start_idx:end_idx]
batch_target_f = target_f_list[start_idx:end_idx]
batch_source_f = source_f_list[start_idx:end_idx]
batch_pred, batch_matr = self.get(batch_img, batch_target_f, batch_source_f)
yield batch_pred, batch_matr
def paste_to_whole(foreground, background, matrix, mask=None, crop_mask=(0,0,0,0), blur_amount=0.1, erode_amount = 0.15, blend_method='linear'):
inv_matrix = cv2.invertAffineTransform(matrix)
fg_shape = foreground.shape[:2]
bg_shape = (background.shape[1], background.shape[0])
foreground = cv2.warpAffine(foreground, inv_matrix, bg_shape, borderValue=0.0)
if mask is None:
mask = np.full(fg_shape, 1., dtype=np.float32)
mask = mask_crop(mask, crop_mask)
mask = cv2.warpAffine(mask, inv_matrix, bg_shape, borderValue=0.0)
else:
assert fg_shape == mask.shape[:2], "foreground & mask shape mismatch!"
mask = mask_crop(mask, crop_mask).astype('float32')
mask = cv2.warpAffine(mask, inv_matrix, (background.shape[1], background.shape[0]), borderValue=0.0)
_mask = mask.copy()
_mask[_mask > 0.05] = 1.
non_zero_points = cv2.findNonZero(_mask)
_, _, w, h = cv2.boundingRect(non_zero_points)
mask_size = int(np.sqrt(w * h))
if erode_amount > 0:
kernel_size = max(int(mask_size * erode_amount), 1)
structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size))
mask = cv2.erode(mask, structuring_element)
if blur_amount > 0:
kernel_size = max(int(mask_size * blur_amount), 3)
if kernel_size % 2 == 0:
kernel_size += 1
mask = cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0)
mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3))
if blend_method == 'laplacian':
composite_image = laplacian_blending(foreground, background, mask.clip(0,1), num_levels=4)
else:
composite_image = mask * foreground + (1 - mask) * background
return composite_image.astype("uint8").clip(0, 255)