roop-unleashed / clip /vitseg.py
jtefera's picture
Upload folder using huggingface_hub
6bcb009
raw
history blame
10.7 kB
import math
from posixpath import basename, dirname, join
# import clip
from clip.model import convert_weights
import torch
import json
from torch import nn
from torch.nn import functional as nnf
from torch.nn.modules import activation
from torch.nn.modules.activation import ReLU
from torchvision import transforms
normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
from torchvision.models import ResNet
def process_prompts(conditional, prompt_list, conditional_map):
# DEPRECATED
# randomly sample a synonym
words = [conditional_map[int(i)] for i in conditional]
words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words]
words = [w.replace('_', ' ') for w in words]
if prompt_list is not None:
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
prompts = [prompt_list[i] for i in prompt_indices]
else:
prompts = ['a photo of {}'] * (len(words))
return [promt.format(w) for promt, w in zip(prompts, words)]
class VITDenseBase(nn.Module):
def rescaled_pos_emb(self, new_size):
assert len(new_size) == 2
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
return torch.cat([self.model.positional_embedding[:1], b])
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
with torch.no_grad():
x_inp = nnf.interpolate(x_inp, (384, 384))
x = self.model.patch_embed(x_inp)
cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
if self.model.dist_token is None:
x = torch.cat((cls_token, x), dim=1)
else:
x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
x = self.model.pos_drop(x + self.model.pos_embed)
activations = []
for i, block in enumerate(self.model.blocks):
x = block(x)
if i in extract_layers:
# permute to be compatible with CLIP
activations += [x.permute(1,0,2)]
x = self.model.norm(x)
x = self.model.head(self.model.pre_logits(x[:, 0]))
# again for CLIP compatibility
# x = x.permute(1, 0, 2)
return x, activations, None
def sample_prompts(self, words, prompt_list=None):
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
prompts = [prompt_list[i] for i in prompt_indices]
return [promt.format(w) for promt, w in zip(prompts, words)]
def get_cond_vec(self, conditional, batch_size):
# compute conditional from a single string
if conditional is not None and type(conditional) == str:
cond = self.compute_conditional(conditional)
cond = cond.repeat(batch_size, 1)
# compute conditional from string list/tuple
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
assert len(conditional) == batch_size
cond = self.compute_conditional(conditional)
# use conditional directly
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
cond = conditional
# compute conditional from image
elif conditional is not None and type(conditional) == torch.Tensor:
with torch.no_grad():
cond, _, _ = self.visual_forward(conditional)
else:
raise ValueError('invalid conditional')
return cond
def compute_conditional(self, conditional):
import clip
dev = next(self.parameters()).device
if type(conditional) in {list, tuple}:
text_tokens = clip.tokenize(conditional).to(dev)
cond = self.clip_model.encode_text(text_tokens)
else:
if conditional in self.precomputed_prompts:
cond = self.precomputed_prompts[conditional].float().to(dev)
else:
text_tokens = clip.tokenize([conditional]).to(dev)
cond = self.clip_model.encode_text(text_tokens)[0]
return cond
class VITDensePredT(VITDenseBase):
def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False,
learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False,
add_calibration=False, process_cond=None, not_pretrained=False):
super().__init__()
# device = 'cpu'
self.extract_layers = extract_layers
self.cond_layer = cond_layer
self.limit_to_clip_only = limit_to_clip_only
self.process_cond = None
if add_calibration:
self.calibration_conds = 1
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
self.add_activation1 = True
import timm
self.model = timm.create_model('vit_base_patch16_384', pretrained=True)
self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond)
for p in self.model.parameters():
p.requires_grad_(False)
import clip
self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False)
# del self.clip_model.visual
self.token_shape = (14, 14)
# conditional
if reduce_cond is not None:
self.reduce_cond = nn.Linear(512, reduce_cond)
for p in self.reduce_cond.parameters():
p.requires_grad_(False)
else:
self.reduce_cond = None
# self.film = AVAILABLE_BLOCKS['film'](512, 128)
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
# DEPRECATED
# self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))}
assert len(self.extract_layers) == depth
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
trans_conv_ks = (16, 16)
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
# refinement and trans conv
if learn_trans_conv_only:
for p in self.parameters():
p.requires_grad_(False)
for p in self.trans_conv.parameters():
p.requires_grad_(True)
if prompt == 'fixed':
self.prompt_list = ['a photo of a {}.']
elif prompt == 'shuffle':
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
elif prompt == 'shuffle+':
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
'a bad photo of a {}.', 'a photo of the {}.']
elif prompt == 'shuffle_clip':
from models.clip_prompts import imagenet_templates
self.prompt_list = imagenet_templates
if process_cond is not None:
if process_cond == 'clamp' or process_cond[0] == 'clamp':
val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2
def clamp_vec(x):
return torch.clamp(x, -val, val)
self.process_cond = clamp_vec
elif process_cond.endswith('.pth'):
shift = torch.load(process_cond)
def add_shift(x):
return x + shift.to(x.device)
self.process_cond = add_shift
import pickle
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
assert type(return_features) == bool
# inp_image = inp_image.to(self.model.positional_embedding.device)
if mask is not None:
raise ValueError('mask not supported')
# x_inp = normalize(inp_image)
x_inp = inp_image
bs, dev = inp_image.shape[0], x_inp.device
inp_image_size = inp_image.shape[2:]
cond = self.get_cond_vec(conditional, bs)
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
activation1 = activations[0]
activations = activations[1:]
a = None
for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)):
if a is not None:
a = reduce(activation) + a
else:
a = reduce(activation)
if i == self.cond_layer:
if self.reduce_cond is not None:
cond = self.reduce_cond(cond)
a = self.film_mul(cond) * a + self.film_add(cond)
a = block(a)
for block in self.extra_blocks:
a = a + block(a)
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
size = int(math.sqrt(a.shape[2]))
a = a.view(bs, a.shape[1], size, size)
if self.trans_conv is not None:
a = self.trans_conv(a)
if self.upsample_proj is not None:
a = self.upsample_proj(a)
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
a = nnf.interpolate(a, inp_image_size)
if return_features:
return a, visual_q, cond, [activation1] + activations
else:
return a,