roop-unleashed / roop /ProcessMgr.py
jtefera's picture
Upload folder using huggingface_hub
6bcb009
raw
history blame
17.4 kB
import os
import cv2
import numpy as np
import psutil
from roop.ProcessOptions import ProcessOptions
from roop.face_util import get_first_face, get_all_faces, rotate_image_180
from roop.utilities import compute_cosine_distance, get_device, str_to_class
from typing import Any, List, Callable
from roop.typing import Frame
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Thread, Lock
from queue import Queue
from tqdm import tqdm
from roop.ffmpeg_writer import FFMPEG_VideoWriter
import roop.globals
def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
queue: Queue[str] = Queue()
for frame_path in temp_frame_paths:
queue.put(frame_path)
return queue
def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
queues = []
for _ in range(queue_per_future):
if not queue.empty():
queues.append(queue.get())
return queues
class ProcessMgr():
input_face_datas = []
target_face_datas = []
processors = []
options : ProcessOptions = None
num_threads = 1
current_index = 0
processing_threads = 1
buffer_wait_time = 0.1
lock = Lock()
frames_queue = None
processed_queue = None
videowriter= None
progress_gradio = None
total_frames = 0
plugins = {
'faceswap' : 'FaceSwapInsightFace',
'mask_clip2seg' : 'Mask_Clip2Seg',
'codeformer' : 'Enhance_CodeFormer',
'gfpgan' : 'Enhance_GFPGAN',
'dmdnet' : 'Enhance_DMDNet',
'gpen' : 'Enhance_GPEN',
}
def __init__(self, progress):
if progress is not None:
self.progress_gradio = progress
def initialize(self, input_faces, target_faces, options):
self.input_face_datas = input_faces
self.target_face_datas = target_faces
self.options = options
processornames = options.processors.split(",")
devicename = get_device()
if len(self.processors) < 1:
for pn in processornames:
classname = self.plugins[pn]
module = 'roop.processors.' + classname
p = str_to_class(module, classname)
p.Initialize(devicename)
self.processors.append(p)
else:
for i in range(len(self.processors) -1, -1, -1):
if not self.processors[i].processorname in processornames:
self.processors[i].Release()
del self.processors[i]
for i,pn in enumerate(processornames):
if i >= len(self.processors) or self.processors[i].processorname != pn:
p = None
classname = self.plugins[pn]
module = 'roop.processors.' + classname
p = str_to_class(module, classname)
p.Initialize(devicename)
if p is not None:
self.processors.insert(i, p)
def run_batch(self, source_files, target_files, threads:int = 1):
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
self.total_frames = len(source_files)
self.num_threads = threads
with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
with ThreadPoolExecutor(max_workers=threads) as executor:
futures = []
queue = create_queue(source_files)
queue_per_future = max(len(source_files) // threads, 1)
while not queue.empty():
future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
futures.append(future)
for future in as_completed(futures):
future.result()
def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
for f in current_files:
if not roop.globals.processing:
return
temp_frame = cv2.imread(f)
if temp_frame is not None:
resimg = self.process_frame(temp_frame)
if resimg is not None:
i = source_files.index(f)
cv2.imwrite(target_files[i], resimg)
if update:
update()
def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
num_frame = 0
total_num = frame_end - frame_start
if frame_start > 0:
cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)
while True and roop.globals.processing:
ret, frame = cap.read()
if not ret:
break
self.frames_queue[num_frame % num_threads].put(frame, block=True)
num_frame += 1
if num_frame == total_num:
break
for i in range(num_threads):
self.frames_queue[i].put(None)
def process_videoframes(self, threadindex, progress) -> None:
while True:
frame = self.frames_queue[threadindex].get()
if frame is None:
self.processing_threads -= 1
self.processed_queue[threadindex].put((False, None))
return
else:
resimg = self.process_frame(frame)
self.processed_queue[threadindex].put((True, resimg))
del frame
progress()
def write_frames_thread(self):
nextindex = 0
num_producers = self.num_threads
while True:
process, frame = self.processed_queue[nextindex % self.num_threads].get()
nextindex += 1
if frame is not None:
self.videowriter.write_frame(frame)
del frame
elif process == False:
num_producers -= 1
if num_producers < 1:
return
def run_batch_inmem(self, source_video, target_video, frame_start, frame_end, fps, threads:int = 1, skip_audio=False):
cap = cv2.VideoCapture(source_video)
# frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_count = (frame_end - frame_start) + 1
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
self.total_frames = frame_count
self.num_threads = threads
self.processing_threads = self.num_threads
self.frames_queue = []
self.processed_queue = []
for _ in range(threads):
self.frames_queue.append(Queue(1))
self.processed_queue.append(Queue(1))
self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)
readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
readthread.start()
writethread = Thread(target=self.write_frames_thread)
writethread.start()
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
futures = []
for threadindex in range(threads):
future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
futures.append(future)
for future in as_completed(futures):
future.result()
# wait for the task to complete
readthread.join()
writethread.join()
cap.release()
self.videowriter.close()
self.frames_queue.clear()
self.processed_queue.clear()
def update_progress(self, progress: Any = None) -> None:
process = psutil.Process(os.getpid())
memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
msg = 'memory_usage: ' + '{:.2f}'.format(memory_usage).zfill(5) + f' GB execution_threads {self.num_threads}'
progress.set_postfix({
'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
'execution_threads': self.num_threads
})
progress.update(1)
self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')
def on_no_face_action(self, frame:Frame):
if roop.globals.no_face_action == 0:
return None, frame
elif roop.globals.no_face_action == 2:
return None, None
faces = get_all_faces(frame)
if faces is not None:
return faces, frame
return None, frame
def process_frame(self, frame:Frame):
if len(self.input_face_datas) < 1:
return frame
temp_frame = frame.copy()
num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
if num_swapped > 0:
return temp_frame
if roop.globals.no_face_action == 0:
return frame
if roop.globals.no_face_action == 2:
return None
else:
copyframe = frame.copy()
copyframe = rotate_image_180(copyframe)
temp_frame = copyframe.copy()
num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
if num_swapped == 0:
return frame
temp_frame = rotate_image_180(temp_frame)
return temp_frame
def swap_faces(self, frame, temp_frame):
num_faces_found = 0
if self.options.swap_mode == "first":
face = get_first_face(frame)
if face is None:
return num_faces_found, frame
num_faces_found += 1
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
else:
faces = get_all_faces(frame)
if faces is None:
return num_faces_found, frame
if self.options.swap_mode == "all":
for face in faces:
num_faces_found += 1
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
del face
elif self.options.swap_mode == "selected":
for i,tf in enumerate(self.target_face_datas):
for face in faces:
if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
if i < len(self.input_face_datas):
temp_frame = self.process_face(i, face, temp_frame)
num_faces_found += 1
break
del face
elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
gender = 'F' if self.options.swap_mode == "all_female" else 'M'
for face in faces:
if face.sex == gender:
num_faces_found += 1
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
del face
if num_faces_found == 0:
return num_faces_found, frame
maskprocessor = next((x for x in self.processors if x.processorname == 'clip2seg'), None)
if maskprocessor is not None:
temp_frame = self.process_mask(maskprocessor, frame, temp_frame)
return num_faces_found, temp_frame
def process_face(self,face_index, target_face, frame:Frame):
enhanced_frame = None
inputface = self.input_face_datas[face_index].faces[0]
for p in self.processors:
if p.type == 'swap':
fake_frame = p.Run(inputface, target_face, frame)
scale_factor = 0.0
elif p.type == 'mask':
continue
else:
enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)
upscale = 512
orig_width = fake_frame.shape[1]
fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
mask_offsets = inputface.mask_offsets
if enhanced_frame is None:
scale_factor = int(upscale / orig_width)
result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
else:
result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)
return result
def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
if start_x < 0:
start_x = 0
if start_y < 0:
start_y = 0
if end_x > frame.shape[1]:
end_x = frame.shape[1]
if end_y > frame.shape[0]:
end_y = frame.shape[0]
return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y
# Paste back adapted from here
# https://github.com/fAIseh00d/refacer/blob/main/refacer.py
# which is revised insightface paste back code
def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
M_scale = M * scale_factor
IM = cv2.invertAffineTransform(M_scale)
face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
##Generate white square sized as a upsk_face
img_matte = np.full((upsk_face.shape[0],upsk_face.shape[1]), 255, dtype=np.uint8)
if mask_offsets[0] > 0:
img_matte[:mask_offsets[0],:] = 0
if mask_offsets[1] > 0:
img_matte[-mask_offsets[1]:,:] = 0
##Transform white square back to target_img
img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0)
##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0
#Detect the affine transformed white area
mask_h_inds, mask_w_inds = np.where(img_matte==255)
#Calculate the size (and diagonal size) of transformed white area width and height boundaries
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
mask_size = int(np.sqrt(mask_h*mask_w))
#Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
# k = max(mask_size//12, 8)
k = max(mask_size//10, 10)
kernel = np.ones((k,k),np.uint8)
img_matte = cv2.erode(img_matte,kernel,iterations = 1)
#Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
# k = max(mask_size//24, 4)
k = max(mask_size//20, 5)
kernel_size = (k, k)
blur_size = tuple(2*i+1 for i in kernel_size)
img_matte = cv2.GaussianBlur(img_matte, blur_size, 0)
#Normalize images to float values and reshape
img_matte = img_matte.astype(np.float32)/255
face_matte = face_matte.astype(np.float32)/255
img_matte = np.minimum(face_matte, img_matte)
img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1])
##Transform upcaled face back to target_img
paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
if upsk_face is not fake_face:
fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)
##Re-assemble image
paste_face = img_matte * paste_face
paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
del img_matte
del face_matte
del upsk_face
del fake_face
return paste_face.astype(np.uint8)
def process_mask(self, processor, frame:Frame, target:Frame):
img_mask = processor.Run(frame, self.options.masking_text)
img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
target = target.astype(np.float32)
result = (1-img_mask) * target
result += img_mask * frame.astype(np.float32)
return np.uint8(result)
def unload_models():
pass
def release_resources(self):
for p in self.processors:
p.Release()
self.processors.clear()