seyia92coding's picture
pip install sklearn
b2ac188
raw
history blame
7.34 kB
# -*- coding: utf-8 -*-
"""HS_Text_REC_Games_Gradio_Blocks.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/19yJ8RC70IDljwSmPlqtOzWz192gwLAHF
"""
pip install scikit-learn
import pandas as pd
import numpy as np
from fuzzywuzzy import fuzz
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import gradio as gr
df = pd.read_csv("Metacritic_Reviews_Only.csv", error_bad_lines=False, encoding='utf-8')
#Remove title from review
def remove_title(row):
game_title = row['Game Title']
body_text = row['Reviews']
new_doc = body_text.replace(game_title, "")
return new_doc
df['Reviews'] = df.apply(remove_title, axis=1)
#drop redundant column
df = df.drop(['Unnamed: 0'], axis=1)
df.dropna(inplace=True) #Drop Null Reviews
# Instantiate the vectorizer object to the vectorizer variable
#Minimum word count 2 to be included, words that appear in over 70% of docs should not be included
vectorizer = TfidfVectorizer(min_df=2, max_df=0.7)
# Fit and transform the plot column
vectorized_data = vectorizer.fit_transform(df['Reviews'])
# Create Dataframe from TF-IDFarray
tfidf_df = pd.DataFrame(vectorized_data.toarray(), columns=vectorizer.get_feature_names())
# Assign the game titles to the index
tfidf_df.index = df['Game Title']
# Find the cosine similarity measures between all game and assign the results to cosine_similarity_array.
cosine_similarity_array = cosine_similarity(tfidf_df)
# Create a DataFrame from the cosine_similarity_array with tfidf_df.index as its rows and columns.
cosine_similarity_df = pd.DataFrame(cosine_similarity_array, index=tfidf_df.index, columns=tfidf_df.index)
# Find the values for the game Batman: Arkham City
cosine_similarity_series = cosine_similarity_df.loc['Batman: Arkham City']
# Sort these values highest to lowest
ordered_similarities = cosine_similarity_series.sort_values(ascending=False)
# Print the results
print(ordered_similarities)
# create a function to find the closest title
def matching_score(a,b):
#fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance
return fuzz.ratio(a,b)
# exactly the same, the score becomes 100
#Convert index to title_year
def get_title_from_index(index):
return df[df.index == index]['Game Title'].values[0]
# A function to return the most similar title to the words a user type
# Without this, the recommender only works when a user enters the exact title which the data has.
def find_closest_title(title):
#matching_score(a,b) > a is the current row, b is the title we're trying to match
leven_scores = list(enumerate(df['Game Title'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~]
closest_title = get_title_from_index(sorted_leven_scores[0][0])
distance_score = sorted_leven_scores[0][1]
return closest_title, distance_score
# Bejeweled Twist, 100
def find_closest_titles(title):
leven_scores = list(enumerate(df['Game Title'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~]
closest_titles = [get_title_from_index(sorted_leven_scores[i][0]) for i in range(5)]
distance_scores = [sorted_leven_scores[i][1] for i in range(5)]
return closest_titles, distance_scores
# Bejeweled Twist, 100
def recommend_games_v1(game1, game2, game3, max_results):
#Counter for Ranking
number = 1
print('Recommended because you played {}, {} and {}:\n'.format(game1, game2, game3))
list_of_games_enjoyed = [game1, game2, game3]
games_enjoyed_df = tfidf_df.reindex(list_of_games_enjoyed)
user_prof = games_enjoyed_df.mean()
tfidf_subset_df = tfidf_df.drop([game1, game2, game3], axis=0)
similarity_array = cosine_similarity(user_prof.values.reshape(1, -1), tfidf_subset_df)
similarity_df = pd.DataFrame(similarity_array.T, index=tfidf_subset_df.index, columns=["similarity_score"])
# Sort the values from high to low by the values in the similarity_score
sorted_similarity_df = similarity_df.sort_values(by="similarity_score", ascending=False)
number = 0
rank = 1
rank_range = []
name_list = []
score_list = []
for n in sorted_similarity_df.index:
if rank <= max_results:
rank_range.append(rank)
name_list.append(n)
score_list.append(str(round(sorted_similarity_df.iloc[number]['similarity_score']*100,2)) + "% ") #format score as a percentage
number+=1
rank +=1
#Turn lists into a dictionary
data = {'Rank': rank_range, 'Game Title': name_list, '% Match': score_list}
rec_table = pd.DataFrame.from_dict(data) #Convert dictionary into dataframe
rec_table.set_index('Rank', inplace=True) #Make Rank column the index
return rec_table
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Game Recommendations
Input 3 games you enjoyed playing and use the dropdown to confirm your selections. Hopefully they are registered in the database. Once all 3 have been chosen, please generate your recommendations.
"""
)
options = ['Dragonball', 'Batman', 'Tekken']
def Dropdown_list(x):
new_options = [*options, x + " Remastered", x + ": The Remake", x + ": Game of the Year Edition", x + " Steelbook Edition"]
return gr.Dropdown.update(choices=new_options)
with gr.Column(visible=True):
first_entry = gr.Textbox(label="Game Title 1")
first_dropdown = gr.Dropdown(choices=[], label="Closest Matches")
update_first = gr.Button("Match Closest Title 1")
with gr.Column(visible=True):
second_entry = gr.Textbox(label="Game Title 2")
second_dropdown = gr.Dropdown(label="Closest Matches")
update_second = gr.Button("Match Closest Title 2")
with gr.Column(visible=True):
third_entry = gr.Textbox(label="Game Title 3")
third_dropdown = gr.Dropdown(label="Closest Matches")
update_third = gr.Button("Match Closest Title 3")
with gr.Row():
slider = gr.Slider(1, 20, step=1)
with gr.Row():
generate = gr.Button("Generate")
results = gr.Dataframe(label="Top Results")
def filter_matches(entry):
top_matches = find_closest_titles(entry)
top_matches = list(top_matches[0])
return gr.Dropdown.update(choices=top_matches) #, gr.update(visible=True)
def new_match(text):
top_match = find_closest_title(text)
return text
first_entry.change(new_match, inputs=first_entry, outputs=first_dropdown)
update_first.click(filter_matches, inputs=first_dropdown, outputs=first_dropdown)
second_entry.change(new_match, inputs=second_entry, outputs=second_dropdown)
update_second.click(filter_matches, inputs=second_dropdown, outputs=second_dropdown)
third_entry.change(new_match, inputs=third_entry, outputs=third_dropdown)
update_third.click(filter_matches, inputs=third_dropdown, outputs=third_dropdown)
generate.click(recommend_games_v1, inputs=[first_dropdown, second_dropdown, third_dropdown, slider], outputs=results)
demo.launch()