# -*- coding: utf-8 -*- """HS_Text_REC_Games_Gradio_Blocks.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/19yJ8RC70IDljwSmPlqtOzWz192gwLAHF """ pip install scikit-learn import pandas as pd import numpy as np from fuzzywuzzy import fuzz from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import gradio as gr df = pd.read_csv("Metacritic_Reviews_Only.csv", error_bad_lines=False, encoding='utf-8') #Remove title from review def remove_title(row): game_title = row['Game Title'] body_text = row['Reviews'] new_doc = body_text.replace(game_title, "") return new_doc df['Reviews'] = df.apply(remove_title, axis=1) #drop redundant column df = df.drop(['Unnamed: 0'], axis=1) df.dropna(inplace=True) #Drop Null Reviews # Instantiate the vectorizer object to the vectorizer variable #Minimum word count 2 to be included, words that appear in over 70% of docs should not be included vectorizer = TfidfVectorizer(min_df=2, max_df=0.7) # Fit and transform the plot column vectorized_data = vectorizer.fit_transform(df['Reviews']) # Create Dataframe from TF-IDFarray tfidf_df = pd.DataFrame(vectorized_data.toarray(), columns=vectorizer.get_feature_names()) # Assign the game titles to the index tfidf_df.index = df['Game Title'] # Find the cosine similarity measures between all game and assign the results to cosine_similarity_array. cosine_similarity_array = cosine_similarity(tfidf_df) # Create a DataFrame from the cosine_similarity_array with tfidf_df.index as its rows and columns. cosine_similarity_df = pd.DataFrame(cosine_similarity_array, index=tfidf_df.index, columns=tfidf_df.index) # Find the values for the game Batman: Arkham City cosine_similarity_series = cosine_similarity_df.loc['Batman: Arkham City'] # Sort these values highest to lowest ordered_similarities = cosine_similarity_series.sort_values(ascending=False) # Print the results print(ordered_similarities) # create a function to find the closest title def matching_score(a,b): #fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance return fuzz.ratio(a,b) # exactly the same, the score becomes 100 #Convert index to title_year def get_title_from_index(index): return df[df.index == index]['Game Title'].values[0] # A function to return the most similar title to the words a user type # Without this, the recommender only works when a user enters the exact title which the data has. def find_closest_title(title): #matching_score(a,b) > a is the current row, b is the title we're trying to match leven_scores = list(enumerate(df['Game Title'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~] closest_title = get_title_from_index(sorted_leven_scores[0][0]) distance_score = sorted_leven_scores[0][1] return closest_title, distance_score # Bejeweled Twist, 100 def find_closest_titles(title): leven_scores = list(enumerate(df['Game Title'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~] closest_titles = [get_title_from_index(sorted_leven_scores[i][0]) for i in range(5)] distance_scores = [sorted_leven_scores[i][1] for i in range(5)] return closest_titles, distance_scores # Bejeweled Twist, 100 def recommend_games_v1(game1, game2, game3, max_results): #Counter for Ranking number = 1 print('Recommended because you played {}, {} and {}:\n'.format(game1, game2, game3)) list_of_games_enjoyed = [game1, game2, game3] games_enjoyed_df = tfidf_df.reindex(list_of_games_enjoyed) user_prof = games_enjoyed_df.mean() tfidf_subset_df = tfidf_df.drop([game1, game2, game3], axis=0) similarity_array = cosine_similarity(user_prof.values.reshape(1, -1), tfidf_subset_df) similarity_df = pd.DataFrame(similarity_array.T, index=tfidf_subset_df.index, columns=["similarity_score"]) # Sort the values from high to low by the values in the similarity_score sorted_similarity_df = similarity_df.sort_values(by="similarity_score", ascending=False) number = 0 rank = 1 rank_range = [] name_list = [] score_list = [] for n in sorted_similarity_df.index: if rank <= max_results: rank_range.append(rank) name_list.append(n) score_list.append(str(round(sorted_similarity_df.iloc[number]['similarity_score']*100,2)) + "% ") #format score as a percentage number+=1 rank +=1 #Turn lists into a dictionary data = {'Rank': rank_range, 'Game Title': name_list, '% Match': score_list} rec_table = pd.DataFrame.from_dict(data) #Convert dictionary into dataframe rec_table.set_index('Rank', inplace=True) #Make Rank column the index return rec_table demo = gr.Blocks() with demo: gr.Markdown( """ # Game Recommendations Input 3 games you enjoyed playing and use the dropdown to confirm your selections. Hopefully they are registered in the database. Once all 3 have been chosen, please generate your recommendations. """ ) options = ['Dragonball', 'Batman', 'Tekken'] def Dropdown_list(x): new_options = [*options, x + " Remastered", x + ": The Remake", x + ": Game of the Year Edition", x + " Steelbook Edition"] return gr.Dropdown.update(choices=new_options) with gr.Column(visible=True): first_entry = gr.Textbox(label="Game Title 1") first_dropdown = gr.Dropdown(choices=[], label="Closest Matches") update_first = gr.Button("Match Closest Title 1") with gr.Column(visible=True): second_entry = gr.Textbox(label="Game Title 2") second_dropdown = gr.Dropdown(label="Closest Matches") update_second = gr.Button("Match Closest Title 2") with gr.Column(visible=True): third_entry = gr.Textbox(label="Game Title 3") third_dropdown = gr.Dropdown(label="Closest Matches") update_third = gr.Button("Match Closest Title 3") with gr.Row(): slider = gr.Slider(1, 20, step=1) with gr.Row(): generate = gr.Button("Generate") results = gr.Dataframe(label="Top Results") def filter_matches(entry): top_matches = find_closest_titles(entry) top_matches = list(top_matches[0]) return gr.Dropdown.update(choices=top_matches) #, gr.update(visible=True) def new_match(text): top_match = find_closest_title(text) return text first_entry.change(new_match, inputs=first_entry, outputs=first_dropdown) update_first.click(filter_matches, inputs=first_dropdown, outputs=first_dropdown) second_entry.change(new_match, inputs=second_entry, outputs=second_dropdown) update_second.click(filter_matches, inputs=second_dropdown, outputs=second_dropdown) third_entry.change(new_match, inputs=third_entry, outputs=third_dropdown) update_third.click(filter_matches, inputs=third_dropdown, outputs=third_dropdown) generate.click(recommend_games_v1, inputs=[first_dropdown, second_dropdown, third_dropdown, slider], outputs=results) demo.launch()