seyia92coding commited on
Commit
e225910
1 Parent(s): 27f2d60

remove playstation and xbox

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -6,13 +6,12 @@ import itertools
6
  import matplotlib.pyplot as plt
7
  from sklearn.feature_extraction.text import TfidfVectorizer
8
  from sklearn.metrics.pairwise import linear_kernel
9
- #from huggingface_hub import upload_file
10
- #fuzz = upload_file(path_in_repo="fuzz.py")
11
  from fuzzywuzzy import fuzz
12
  from sklearn.feature_extraction.text import TfidfVectorizer
13
  import gradio as gr
14
- from datasets import load_dataset
15
- #dataset = load_dataset('csv', data_files="steam-clean-games.csv") #seyia92coding/steam_games_2019.csv
 
16
  df = pd.read_csv("steam-clean-games.csv", error_bad_lines=False, encoding='utf-8')
17
  # the function to extract years
18
  def extract_year(date):
@@ -141,7 +140,7 @@ years_sorted = sorted(list(df['year'].unique()))
141
  recommender = gr.Interface(gradio_contents_based_recommender_v2, ["text", gr.inputs.Slider(1, 20, step=int(1)),
142
  gr.inputs.Radio(['Year','Score','Weighted Score','Total Ratings']),
143
  gr.inputs.Slider(int(years_sorted[0]), int(years_sorted[-1]), step=int(1)),
144
- gr.inputs.Radio(['windows','xbox','playstation','linux','mac']),
145
  gr.inputs.Slider(0, 10, step=0.1)],
146
  "dataframe")
147
  recommender.launch(debug=True)
 
6
  import matplotlib.pyplot as plt
7
  from sklearn.feature_extraction.text import TfidfVectorizer
8
  from sklearn.metrics.pairwise import linear_kernel
 
 
9
  from fuzzywuzzy import fuzz
10
  from sklearn.feature_extraction.text import TfidfVectorizer
11
  import gradio as gr
12
+ #from datasets import load_dataset
13
+ #dataset = load_dataset('csv', data_files="steam-clean-games.csv", streaming=True)
14
+ #df = pd.DataFrame.from_dict(dataset)
15
  df = pd.read_csv("steam-clean-games.csv", error_bad_lines=False, encoding='utf-8')
16
  # the function to extract years
17
  def extract_year(date):
 
140
  recommender = gr.Interface(gradio_contents_based_recommender_v2, ["text", gr.inputs.Slider(1, 20, step=int(1)),
141
  gr.inputs.Radio(['Year','Score','Weighted Score','Total Ratings']),
142
  gr.inputs.Slider(int(years_sorted[0]), int(years_sorted[-1]), step=int(1)),
143
+ gr.inputs.Radio(['windows','linux','mac']),
144
  gr.inputs.Slider(0, 10, step=0.1)],
145
  "dataframe")
146
  recommender.launch(debug=True)