# -*- coding: utf-8 -*- import pandas as pd import numpy as np import re import itertools import matplotlib.pyplot as plt from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel #from huggingface_hub import upload_file #fuzz = upload_file(path_in_repo="fuzz.py") from fuzzywuzzy import fuzz from sklearn.feature_extraction.text import TfidfVectorizer import gradio as gr from datasets import load_dataset #dataset = load_dataset('csv', data_files="steam-clean-games.csv") #seyia92coding/steam_games_2019.csv df = pd.read_csv("steam-clean-games.csv", error_bad_lines=False, encoding='utf-8') # the function to extract years def extract_year(date): year = date[:4] if year.isnumeric(): return int(year) else: return np.nan df['year'] = df['release_date'].apply(extract_year) df['steamspy_tags'] = df['steamspy_tags'].str.replace(' ','-') df['genres'] = df['steamspy_tags'].str.replace(';',' ') counts = dict() for i in df.index: for g in df.loc[i,'genres'].split(' '): if g not in counts: counts[g] = 1 else: counts[g] = counts[g] + 1 def create_score(row): pos_count = row['positive_ratings'] neg_count = row['negative_ratings'] total_count = pos_count + neg_count average = pos_count / total_count return round(average, 2) def total_ratings(row): pos_count = row['positive_ratings'] neg_count = row['negative_ratings'] total_count = pos_count + neg_count return total_count df['total_ratings'] = df.apply(total_ratings, axis=1) df['score'] = df.apply(create_score, axis=1) # Calculate mean of vote average column C = df['score'].mean() m = df['total_ratings'].quantile(0.90) # Function that computes the weighted rating of each game def weighted_rating(x, m=m, C=C): v = x['total_ratings'] R = x['score'] # Calculation based on the IMDB formula return round((v/(v+m) * R) + (m/(m+v) * C), 2) # Define a new feature 'score' and calculate its value with `weighted_rating()` df['weighted_score'] = df.apply(weighted_rating, axis=1) # create an object for TfidfVectorizer tfidf_vector = TfidfVectorizer(stop_words='english') tfidf_matrix = tfidf_vector.fit_transform(df['genres']) # create the cosine similarity matrix sim_matrix = linear_kernel(tfidf_matrix,tfidf_matrix) # create a function to find the closest title def matching_score(a,b): #fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance return fuzz.ratio(a,b) """# Make our Recommendation Engine We need combine our formatted dataset with the similarity logic to return recommendations. This is also where we can fine-tune it if we do not like the results. """ ##These functions needed to return different attributes of the recommended game titles #Convert index to title_year def get_title_year_from_index(index): return df[df.index == index]['year'].values[0] #Convert index to title def get_title_from_index(index): return df[df.index == index]['name'].values[0] #Convert index to title def get_index_from_title(title): return df[df.name == title].index.values[0] #Convert index to score def get_score_from_index(index): return df[df.index == index]['score'].values[0] #Convert index to weighted score def get_weighted_score_from_index(index): return df[df.index == index]['weighted_score'].values[0] #Convert index to total_ratings def get_total_ratings_from_index(index): return df[df.index == index]['total_ratings'].values[0] #Convert index to platform def get_platform_from_index(index): return df[df.index == index]['platforms'].values[0] # A function to return the most similar title to the words a user type def find_closest_title(title): #matching_score(a,b) > a is the current row, b is the title we're trying to match leven_scores = list(enumerate(df['name'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~] closest_title = get_title_from_index(sorted_leven_scores[0][0]) distance_score = sorted_leven_scores[0][1] return closest_title, distance_score def gradio_contents_based_recommender_v2(game, how_many, sort_option, min_year, platform, min_score): #Return closest game title match closest_title, distance_score = find_closest_title(game) #Create a Dataframe with these column headers recomm_df = pd.DataFrame(columns=['Game Title', 'Year', 'Score', 'Weighted Score', 'Total Ratings']) #find the corresponding index of the game title games_index = get_index_from_title(closest_title) #return a list of the most similar game indexes as a list games_list = list(enumerate(sim_matrix[int(games_index)])) #Sort list of similar games from top to bottom similar_games = list(filter(lambda x:x[0] != int(games_index), sorted(games_list,key=lambda x:x[1], reverse=True))) #Print the game title the similarity matrix is based on print('Here\'s the list of games similar to '+'\033[1m'+str(closest_title)+'\033[0m'+'.\n') #Only return the games that are on selected platform n_games = [] for i,s in similar_games: if platform in get_platform_from_index(i): n_games.append((i,s)) #Only return the games that are above the minimum score high_scores = [] for i,s in n_games: if get_score_from_index(i) > min_score: high_scores.append((i,s)) #Return the game tuple (game index, game distance score) and store in a dataframe for i,s in n_games[:how_many]: #Dataframe will contain attributes based on game index row = {'Game Title': get_title_from_index(i), 'Year': get_title_year_from_index(i), 'Score': get_score_from_index(i), 'Weighted Score': get_weighted_score_from_index(i), 'Total Ratings': get_total_ratings_from_index(i),} #Append each row to this dataframe recomm_df = recomm_df.append(row, ignore_index = True) #Sort dataframe by Sort_Option provided by user recomm_df = recomm_df.sort_values(sort_option, ascending=False) #Only include games released same or after minimum year selected recomm_df = recomm_df[recomm_df['Year'] >= min_year] return recomm_df #Create list of unique calendar years based on main df column years_sorted = sorted(list(df['year'].unique())) #Interface will include these buttons based on parameters in the function with a dataframe output recommender = gr.Interface(gradio_contents_based_recommender_v2, ["text", gr.inputs.Slider(1, 20, step=int(1)), gr.inputs.Radio(['Year','Score','Weighted Score','Total Ratings']), gr.inputs.Slider(int(years_sorted[0]), int(years_sorted[-1]), step=int(1)), gr.inputs.Radio(['windows','xbox','playstation','linux','mac']), gr.inputs.Slider(0, 10, step=0.1)], "dataframe") recommender.launch(debug=True)