Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import spaces
|
|
|
6 |
|
7 |
# Load the processor and model
|
8 |
processor = AutoProcessor.from_pretrained(
|
@@ -34,15 +35,16 @@ def process_image_and_text(image, text):
|
|
34 |
# Generate output
|
35 |
output = model.generate_from_batch(
|
36 |
inputs,
|
37 |
-
GenerationConfig(max_new_tokens=
|
38 |
tokenizer=processor.tokenizer
|
39 |
)
|
40 |
|
41 |
# Only get generated tokens; decode them to text
|
42 |
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
43 |
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
|
|
44 |
|
45 |
-
return
|
46 |
|
47 |
def chatbot(image, text, history):
|
48 |
if image is None:
|
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import spaces
|
6 |
+
import pprint
|
7 |
|
8 |
# Load the processor and model
|
9 |
processor = AutoProcessor.from_pretrained(
|
|
|
35 |
# Generate output
|
36 |
output = model.generate_from_batch(
|
37 |
inputs,
|
38 |
+
GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"),
|
39 |
tokenizer=processor.tokenizer
|
40 |
)
|
41 |
|
42 |
# Only get generated tokens; decode them to text
|
43 |
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
44 |
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
45 |
+
pretty_text = pprint.pp(generated_text)
|
46 |
|
47 |
+
return pretty_text
|
48 |
|
49 |
def chatbot(image, text, history):
|
50 |
if image is None:
|