File size: 6,369 Bytes
2b659a0
 
 
 
 
 
 
 
 
 
 
 
 
dcce3fd
 
 
4f7d18c
2b659a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcce3fd
 
 
 
 
 
 
 
 
 
2b659a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
from gradio import ChatMessage
import re
import sys
import time
import json
import os
import jsonpickle
import configparser

import example_worlds
from models import GeminiModel
from prompts import prompt_narrate_current_scene, prompt_world_update, prompt_describe_objective
from huggingface_hub import HfApi
from huggingface_hub import login

login(os.getenv("HF_key"))

PATH_GAMELOGS = 'logs'

# config
config = configparser.ConfigParser()
config.read('config.ini')

# language of the game
language = config['Options']['Language']

# Initialize the model and disable the safety settings
reasoning_model_name = config['Models']['ReasoningModel']
narrative_model_name = config['Models']['NarrativeModel']
reasoning_model = GeminiModel("API_key", reasoning_model_name)
narrative_model = GeminiModel("API_key", narrative_model_name)

# Create a name for the log file
timestamp = time.time()
today =  time.gmtime(timestamp)
log_filename =  f"{today[0]}_{today[1]}_{today[2]}_{str(int(time.time()))[-5:]}.json"

# The game loop
def game_loop(message, history):
    global last_player_position
    global number_of_turns
    global game_log_dictionary

    number_of_turns+=1
    game_log_dictionary[number_of_turns] = {}
    game_log_dictionary[number_of_turns]["date"] = time.ctime(time.time())
    game_log_dictionary[number_of_turns]["previous_symbolic_world_state"] = jsonpickle.encode(world, unpicklable=False)
    game_log_dictionary[number_of_turns]["previous_rendered_world_state"] = world.render_world()
    game_log_dictionary[number_of_turns]["user_input"] = message


    answer = ""

    # Get the changes in the world
    prompt_update = prompt_world_update(world.render_world(), message, language=language)
    response_update = reasoning_model.prompt_model(prompt_update)

    # Show the detected changes in the fictional world
    print("🛠️ Predicted outcomes of the player input 🛠️")
    print(f"> Player input: {message}")
    try:
        predicted_outcomes = re.sub(r'#([^#]*?)#','',response_update) 
        print(f"{predicted_outcomes}\n")
        game_log_dictionary[number_of_turns]["predicted_outcomes"] = predicted_outcomes

    except Exception as e:
        print (f"Error: {e}")
    
    # World update
    world.update(response_update)
    game_log_dictionary[number_of_turns]["updated_symbolic_world_state"] = jsonpickle.encode(world, unpicklable=True)
    game_log_dictionary[number_of_turns]["updated_rendered_world_state"] = world.render_world()
    
    if last_player_position is not world.player.location:
    #Narrate new scene
        last_player_position = world.player.location
        new_scene_narration = narrative_model.prompt_model(
            prompt_narrate_current_scene(world.render_world(), 
                                         previous_narrations = world.player.visited_locations[world.player.location.name],
                                         language=language)

        )
        world.player.visited_locations[world.player.location.name]+=[new_scene_narration] 
        answer += f"\n{new_scene_narration}\n\n"
    else:
    #Narrate actions in the current scene
        try:
            answer+= f"{re.findall(r'#([^#]*?)#',response_update)[0]}\n"
        except Exception as e:
            print (f"Error: {e}")


    print(f"\n🌎 World state 🌍\n>Player input: {message}\n{world.render_world()}\n")

    if world.check_objective():
        if language=='es':
            answer += "\n\n🎯¡Completaste el objetivo!"
        else:
            answer += "\n\n🎯You have completed your quest!"

    game_log_dictionary[number_of_turns]["narration"] = answer

    # Dump the whole gamelog to a json file after this turn
    with open(os.path.join(PATH_GAMELOGS,log_filename), 'w', encoding='utf-8') as f:
        json.dump(game_log_dictionary, f, ensure_ascii=False, indent=4)

    if world.check_objective():
        
        api = HfApi()
        api.upload_file(
        path_or_fileobj=os.path.join(PATH_GAMELOGS,log_filename),
        path_in_repo=os.path.join(PATH_GAMELOGS,log_filename),
        repo_id="sgongora27/PAYADOR-experiments",
        repo_type="space",
    )
    
    return answer.replace("<",r"\<").replace(">", r"\>")

# Instantiate the world
world_id = config["Options"]["WorldID"]
world = example_worlds.get_world(world_id, language=language)

# Initialize variables
last_player_position = world.player.location
number_of_turns = 0
game_log_dictionary = {}
game_log_dictionary["narrative_model_name"] = narrative_model_name
game_log_dictionary["reasoning_model_name"] = reasoning_model_name

print(f"\n🌎 World state 🌍\n{world.render_world()}\n")
game_log_dictionary[0] = {}
game_log_dictionary[0]["date"] = time.ctime(time.time())
game_log_dictionary[0]["initial_symbolic_world_state"] = jsonpickle.encode(world, unpicklable=True)
game_log_dictionary[0]["initial_rendered_world_state"] = world.render_world()

#Generate a description of the starting scene
starting_narration = narrative_model.prompt_model(
    prompt_narrate_current_scene(world.render_world(), 
                                 previous_narrations = world.player.visited_locations[world.player.location.name],
                                 language=language, 
                                 starting_scene=True))
world.player.visited_locations[world.player.location.name]+=[starting_narration]

#Generate a description of the main objective
narrated_objective = narrative_model.prompt_model(prompt_describe_objective(world.objective, language=language))
starting_narration += f"\n\n🎯 {re.findall(r'#([^#]*?)#',narrated_objective)[0]}"
game_log_dictionary[0]["starting_narration"] = starting_narration

with open(os.path.join(PATH_GAMELOGS,log_filename), 'w', encoding='utf-8') as f:
    json.dump(game_log_dictionary, f, ensure_ascii=False, indent=4)

#Instantiate the Gradio app
gradio_interface = gr.ChatInterface(
    fn=game_loop,
    chatbot = gr.Chatbot(height=500, value=[{"role": "assistant", "content": starting_narration.replace("<",r"\<").replace(">", r"\>")}], 
                         bubble_full_width = False, show_copy_button = False, type='messages'),
    textbox=gr.Textbox(placeholder="What do you want to do?", container=False, scale=5),
    title="PAYADOR",
    theme="Soft",
    type='messages',
)

gradio_interface.launch(inbrowser=False)