import streamlit as st from transformers import pipeline from gtts import gTTS import speech_recognition as sr import pyaudio # Create a translation pipeline pipe = pipeline('translation', model='Helsinki-NLP/opus-mt-en-hi') # Initialize the SpeechRecognition recognizer recognizer = sr.Recognizer() # Find the microphone device index def find_microphone_index(): p = pyaudio.PyAudio() for i in range(p.get_device_count()): device_info = p.get_device_info_by_index(i) if "microphone" in device_info["name"].lower(): return i return None # Get the microphone device index microphone_index = find_microphone_index() audio_input = st.empty() # Check if the microphone input is requested if st.checkbox("Use Microphone for English Input"): with audio_input: if microphone_index is None: st.warning("No microphone found. Please make sure your microphone is connected.") else: st.warning("Listening for audio input... Speak in English.") try: with sr.Microphone(device_index=microphone_index) as source: audio = recognizer.listen(source) st.success("Audio input recorded. Translating...") # Recognize the English speech english_text = recognizer.recognize_google(audio, language='en') # Translate the English text to Hindi out = pipe(english_text, src_lang='en', tgt_lang='hi') # Extract the translation translation_text = out[0]['translation_text'] st.text(f"English Input: {english_text}") st.text(f"Hindi Translation: {translation_text}") # Convert the translated text to speech tts = gTTS(translation_text, lang='hi') tts.save("translated_audio.mp3") # Display the audio player for listening to the speech st.audio("translated_audio.mp3", format='audio/mp3') except sr.WaitTimeoutError: st.warning("No speech detected. Please speak into the microphone.") except sr.RequestError as e: st.error(f"Could not request results from Google Speech Recognition service: {e}") except sr.UnknownValueError: st.warning("Speech recognition could not understand the audio.")