Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import
|
4 |
|
5 |
-
# Load the
|
6 |
-
|
|
|
|
|
7 |
|
8 |
# Pydantic model for input validation
|
9 |
class TextInput(BaseModel):
|
@@ -16,5 +18,13 @@ app = FastAPI()
|
|
16 |
# Endpoint for text summarization
|
17 |
@app.post("/summarize_text")
|
18 |
async def summarize_text_endpoint(item: TextInput):
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
return {"summary": summary}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_name = "shahzaib201/AI_OEL"
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
|
10 |
# Pydantic model for input validation
|
11 |
class TextInput(BaseModel):
|
|
|
18 |
# Endpoint for text summarization
|
19 |
@app.post("/summarize_text")
|
20 |
async def summarize_text_endpoint(item: TextInput):
|
21 |
+
# Tokenize the input text
|
22 |
+
inputs = tokenizer(item.text, return_tensors="pt", max_length=1024, truncation=True)
|
23 |
+
|
24 |
+
# Generate the summary
|
25 |
+
summary_ids = model.generate(inputs.input_ids, max_length=item.max_length, num_beams=4, length_penalty=2.0, early_stopping=True)
|
26 |
+
|
27 |
+
# Decode the generated summary
|
28 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
29 |
+
|
30 |
return {"summary": summary}
|