shainis's picture
Create app.py
b167b38
raw
history blame
2.4 kB
import os
import tensorflow as tf
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
import numpy as np
import PIL.Image
import gradio as gr
import tensorflow_hub as hub
import matplotlib.pyplot as plt
def tensor_to_image(tensor):
tensor = tensor*255
tensor = np.array(tensor, dtype=np.uint8)
if np.ndim(tensor)>3:
assert tensor.shape[0] == 1
tensor = tensor[0]
return PIL.Image.fromarray(tensor)
style_urls = {
'Kanagawa great wave': 'The_Great_Wave_off_Kanagawa.jpg',
'Kandinsky composition 7': 'Kandinsky_Composition_7.jpg',
'Hubble pillars of creation': 'Pillars_of_creation_2014_HST_WFC3-UVIS_full-res_denoised.jpg',
'Van gogh starry night': 'Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg',
'Turner nantes': 'JMW_Turner_-_Nantes_from_the_Ile_Feydeau.jpg',
'Munch scream': 'Edvard_Munch.jpg',
'Picasso demoiselles avignon': 'Les_Demoiselles.jpg',
'Picasso violin': 'picaso_violin.jpg',
'Picasso bottle of rum': 'picaso_rum.jpg',
'Fire': 'Large_bonfire.jpg',
'Derkovits woman head': 'Derkovits_Gyula_Woman_head_1922.jpg',
'Amadeo style life': 'Amadeo_Souza_Cardoso.jpg',
'Derkovtis talig': 'Derkovits_Gyula_Talig.jpg',
'Kadishman': 'kadishman.jpeg'
}
style_images = [k for k, v in style_urls.items()]
content_image_input = gr.inputs.Image(label="Content Image")
radio_style = gr.Radio(style_images, label="Choose Style")
def perform_neural_transfer(content_image_input, style_image_input):
content_image = content_image_input.astype(np.float32)[np.newaxis, ...] / 255.
style_image_input = style_urls[style_image_input]
style_image_input = plt.imread(style_image_input)
style_image = style_image_input.astype(np.float32)[np.newaxis, ...] / 255.
style_image = tf.image.resize(style_image, (256, 256))
hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
stylized_image = outputs[0]
return tensor_to_image(stylized_image)
app_interface = gr.Interface(fn=perform_neural_transfer,
inputs=[content_image_input, radio_style],
outputs="image",
title="Art Generation with Neural Style Transfer",
)
app_interface.launch()