shaitest / app.py
shainis's picture
Update app.py
a5c05bc
#!/usr/bin/env python
# coding: utf-8
import gradio as gr
from fastai.vision.all import *
import skimage
import pathlib
plt = platform.system()
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
# In[6]:
learn = load_learner('export.pkl')
# In[7]:
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
# In[18]:
# In[19]:
import gradio as gr
title = "Pet Breed Classifier"
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
gr.Interface(fn=predict,
inputs=gr.inputs.Image(shape=(512, 512)),
theme="dark-peach",
title = "?ืชืคื•ื— ืื• ืขื’ื‘ื ื™ื”",
examples=[["example1.jpg"], ["example2.png"], ["example3.jpg"]],
description = "Tomato / Apple classifier trained on images from the internet with fastai. Created as a demo for Gradio and HuggingFace Spaces.",
outputs=gr.outputs.Label(num_top_classes=3)).launch(share=False)
# In[ ]: