Spaces:
Sleeping
Sleeping
import torch | |
from transformers import pipeline, AutoTokenizer | |
import gradio as gr | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
tokenizer.clean_up_tokenization_spaces = False # Explicitly set the parameter if needed | |
# Load CLIP model for zero-shot classification | |
clip_checkpoint = "DrChamyoung/Powerviewwtiten" | |
clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification") | |
# Postprocess the output from CLIP | |
def postprocess(output): | |
return {out["label"]: float(out["score"]) for out in output} | |
# Inference function for CLIP | |
def infer(image, candidate_labels): | |
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")] | |
clip_out = clip_detector(image, candidate_labels=candidate_labels) | |
return postprocess(clip_out) | |
# Gradio interface | |
with gr.Blocks() as app: | |
gr.Markdown("# Custom Classification") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="pil") | |
text_input = gr.Textbox(label="Input a list of labels") | |
run_button = gr.Button("Run") | |
with gr.Column(): | |
clip_output = gr.Label(label="Output", num_top_classes=3) | |
examples = [["image_8.webp", "girl, boy, lgbtq"],["image_8.webp", "seo jun park, dr chamyoung , dr stone"],["image_8.webp", "human , dog, god"],["image_8.webp", "asian , russian , american, indian , european"]] | |
gr.Examples( | |
examples=examples, | |
inputs=[image_input, text_input], | |
outputs=[clip_output], | |
fn=infer, | |
cache_examples=True | |
) | |
run_button.click(fn=infer, | |
inputs=[image_input, text_input], | |
outputs=[clip_output]) | |
app.launch() | |