Spaces:
Runtime error
Runtime error
File size: 12,324 Bytes
89ccd51 af6718b 89ccd51 b443c25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import gradio as gr
import os
# import copy
import torch
# import random
import spaces
from eagle import conversation as conversation_lib
from eagle.constants import DEFAULT_IMAGE_TOKEN
from eagle.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from eagle.conversation import conv_templates, SeparatorStyle
from eagle.model.builder import load_pretrained_model
from eagle.utils import disable_torch_init
from eagle.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
from PIL import Image
import argparse
from transformers import TextIteratorStreamer
from threading import Thread
# os.environ['GRADIO_TEMP_DIR'] = './gradio_tmp'
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
argparser = argparse.ArgumentParser()
argparser.add_argument("--server_name", default="0.0.0.0", type=str)
argparser.add_argument("--port", default="6324", type=str)
argparser.add_argument("--model-path", default="NVEagle/Eagle-X5-13B-Chat", type=str)
argparser.add_argument("--model-base", type=str, default=None)
argparser.add_argument("--num-gpus", type=int, default=1)
argparser.add_argument("--conv-mode", type=str, default="vicuna_v1")
argparser.add_argument("--temperature", type=float, default=0.2)
argparser.add_argument("--max-new-tokens", type=int, default=512)
argparser.add_argument("--num_frames", type=int, default=16)
argparser.add_argument("--load-8bit", action="store_true")
argparser.add_argument("--load-4bit", action="store_true")
argparser.add_argument("--debug", action="store_true")
args = argparser.parse_args()
model_path = args.model_path
conv_mode = args.conv_mode
filt_invalid="cut"
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit)
our_chatbot = None
def upvote_last_response(state):
return ("",) + (disable_btn,) * 3
def downvote_last_response(state):
return ("",) + (disable_btn,) * 3
def flag_last_response(state):
return ("",) + (disable_btn,) * 3
def clear_history():
state =conv_templates[conv_mode].copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, imagebox, textbox, image_process_mode):
if state is None:
state = conv_templates[conv_mode].copy()
if imagebox is not None:
textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox
image = Image.open(imagebox).convert('RGB')
if imagebox is not None:
textbox = (textbox, image, image_process_mode)
state.append_message(state.roles[0], textbox)
state.append_message(state.roles[1], None)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def delete_text(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def regenerate(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
@spaces.GPU
def generate(state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens):
prompt = state.get_prompt()
images = state.get_images(return_pil=True)
#prompt, image_args = process_image(prompt, images)
ori_prompt = prompt
num_image_tokens = 0
if images is not None and len(images) > 0:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
#images = [load_image_from_base64(image) for image in images]
image_sizes = [image.size for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(model.device, dtype=torch.float16) for image in images]
else:
images = images.to(model.device, dtype=torch.float16)
else:
images = None
image_sizes = None
image_args = {"images": images, "image_sizes": image_sizes}
else:
images = None
image_args = {}
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = 512
do_sample = True if temperature > 0.001 else False
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
if max_new_tokens < 1:
# yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
return
thread = Thread(target=model.generate, kwargs=dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
pad_token_id=tokenizer.eos_token_id,
**image_args
))
thread.start()
generated_text = ''
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
state.messages[-1][-1] = generated_text
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
torch.cuda.empty_cache()
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter.",
container=False,
)
title_markdown = ("""
# Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders
[[Code](https://github.com/NVlabs/EAGLE)] [[Model](https://huggingface.co/NVEagle)] | π [[Arxiv](https://arxiv.org/pdf/2408.15998)]]
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(title="Eagle", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(label="Input Image", type="filepath")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(examples=[
[f"{cur_dir}/assets/health-insurance.png", "Under which circumstances do I need to be enrolled in mandatory health insurance if I am an international student?"],
[f"{cur_dir}/assets/leasing-apartment.png", "I don't have any 3rd party renter's insurance now. Do I need to get one for myself?"],
[f"{cur_dir}/assets/nvidia.jpeg", "Who is the person in the middle?"],
[f"{cur_dir}/assets/animal-compare.png", "Are these two pictures showing the same kind of animal?"],
[f"{cur_dir}/assets/georgia-tech.jpeg", "Where is this photo taken?"]
], inputs=[imagebox, textbox], cache_examples=False)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="Eagle Chatbot",
height=650,
layout="panel",
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=False)
downvote_btn = gr.Button(value="π Downvote", interactive=False)
flag_btn = gr.Button(value="β οΈ Flag", interactive=False)
#stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear", interactive=False)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
downvote_btn.click(
downvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
flag_btn.click(
flag_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
)
regenerate_btn.click(
delete_text,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
textbox.submit(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
submit_btn.click(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
demo.queue(
status_update_rate=10,
api_open=False
).launch() |