Update summary.py
Browse files- summary.py +8 -4
summary.py
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
import torch
|
|
|
2 |
from transformers import PegasusForConditionalGeneration, AutoTokenizer
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
def summarize(passage):
|
5 |
txt = " ".join(passage)
|
6 |
-
model_name = 'google/pegasus-cnn_dailymail'
|
7 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
|
10 |
batch = tokenizer(txt, truncation=True, padding='longest', return_tensors="pt").to(device)
|
11 |
translated = model.generate(**batch)
|
12 |
summy = tokenizer.batch_decode(translated, skip_special_tokens=True)
|
|
|
1 |
import torch
|
2 |
+
import streamlit as st
|
3 |
from transformers import PegasusForConditionalGeneration, AutoTokenizer
|
4 |
|
5 |
+
@st.cache(allow_output_mutation=True)
|
6 |
+
|
7 |
+
model_name = 'google/pegasus-cnn_dailymail'
|
8 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
|
11 |
+
|
12 |
def summarize(passage):
|
13 |
txt = " ".join(passage)
|
|
|
|
|
|
|
|
|
14 |
batch = tokenizer(txt, truncation=True, padding='longest', return_tensors="pt").to(device)
|
15 |
translated = model.generate(**batch)
|
16 |
summy = tokenizer.batch_decode(translated, skip_special_tokens=True)
|