from transformers import AutoTokenizer, AutoModelWithLMHead import gradio as grad text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small") mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small") def text2text_summary(para): initial_txt = para.strip().replace("\n","") tkn_text = text2text_tkn.encode(initial_txt,return_tensors="pt") tkn_ids = mdl.generate(tkn_text,max_length=250,num_beams=5,repetition_penalty=2.5, early_stopping=True) response = text2text_tkn.decode(tkn_ids[0],skip_special_tokens=True) return response para = grad.Textbox(lines=10, label="Paragraph",placeholder="Copy paragraph") out = grad.Textbox(lines=1, label="Summary") grad.Interface(text2text_summary, inputs=para, outputs=out).launch()