from transformers import AutoModelForCausalLM, AutoTokenizer, BlenderbotForConditionalGeneration import torch chat_tkn = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") mdl = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") def converse(user_input, chat_history=[]): user_input_ids = chat_tkn(user_input + chat_tkn.eos_token, return_tensors='pt').input_ids bot_input_ids = torch.cat([torch.LongTensor(chat_history),user_input_ids], dim=-1) chat_history = mdl.generate(bot_input_ids,max_length=1000, pad_token_id=chat_tkn.eos_token_id).tolist() print(chat_history) response = chat_tkn.decode(chat_history[0]).split("<|endoftext|") print("starting to print response") print(response) #html for display html = "
" for x, mesg in enumerate(response): if x%2!=0 : mesg="Alicia:"+mesg clazz="alicia" else : clazz="user" print("value of x") print(x) print("message") print(mesg) html += "
{}
".format(clazz,mesg) html += "
" print(html) return html, chat_history import gradio as grad css =""" .mychat {display:flex;flex-direction:column} .mesg {padding:5px;margin-bottom:5px;border-radius:5px;width:75%} .mesg.user {background-color:lightblue;color:white} .mesg.alicia {background-color:orange;color:white,align-self:self-end} .footer {display:none !important} """ #text=grad.inputs.Textbox(placeholder="Lets chat") text=grad.inputs.Textbox(placeholder="Lets chat") grad.Interface(fn=converse, theme="default",inputs=[text,"state"],outputs=["html","state"],css=css).launch()