from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as grad codegen_tkn = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") mdl = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") def codegen(intent): input_ids = codegen_tkn(intent, return_tensors="pt").input_ids gen_ids = mdl.generate(input_ids, max_length=256) response = codegen_tkn.decode(gen_ids[0], skip_special_tokens=True) return response output = grad.Textbox(lines=1, label="Generated Python Code", placeholder="") inp = grad.Textbox(lines=1, label="place your intent here") grad.Interface(codegen, inputs=inp, outputs=output).launch() text = """def merge_sort(unsorted:list): """ input_ids = codegen_tkn(text, return_tensors="pt").input_ids gen_ids = mdl.generate(input_ids, max_length=256) print(codegen_tkn.decode(gen_ids[0],skip_special_tokens=True))