Spaces:
Runtime error
Runtime error
Create trainer.py
Browse files- trainer.py +68 -0
trainer.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from peft import LoraConfig, get_peft_model, PeftModel
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
from model import HubertXCNNEnoder
|
8 |
+
|
9 |
+
class SpeechLLMLightning(pl.LightningModule):
|
10 |
+
def __init__(self, audio_enc_dim=512, llm_dim=2048, llm_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
|
11 |
+
super().__init__()
|
12 |
+
self.save_hyperparameters()
|
13 |
+
|
14 |
+
self.audio_enc_dim = audio_enc_dim
|
15 |
+
self.llm_dim = llm_dim
|
16 |
+
self.llm_name = llm_name
|
17 |
+
|
18 |
+
self.audio_encoder = HubertXCNNEnoder(self.audio_enc_dim, self.llm_dim)
|
19 |
+
self.llm_tokenizer = AutoTokenizer.from_pretrained(self.llm_name)
|
20 |
+
self.llm_tokenizer.pad_token = self.llm_tokenizer.eos_token
|
21 |
+
self.llm_model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
self.llm_name,
|
23 |
+
device_map="auto",
|
24 |
+
)
|
25 |
+
|
26 |
+
peft_config = LoraConfig(
|
27 |
+
r=4,
|
28 |
+
lora_alpha=8,
|
29 |
+
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'],
|
30 |
+
lora_dropout=0.05,
|
31 |
+
task_type="CAUSAL_LM",
|
32 |
+
)
|
33 |
+
|
34 |
+
self.llm_model = get_peft_model(self.llm_model, peft_config)
|
35 |
+
self.llm_model.print_trainable_parameters()
|
36 |
+
|
37 |
+
for param in self.llm_model.parameters():
|
38 |
+
param.requires_grad = False
|
39 |
+
|
40 |
+
self.audio_encoder.eval()
|
41 |
+
self.llm_model.eval()
|
42 |
+
|
43 |
+
|
44 |
+
def encode(self, mel, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids):
|
45 |
+
batch_size = mel.shape[0]
|
46 |
+
|
47 |
+
speech_embeds = self.audio_encoder(mel)
|
48 |
+
embedder = self.llm_model.model.model.embed_tokens
|
49 |
+
pre_prompt_embeds = embedder(pre_tokenized_ids)
|
50 |
+
post_prompt_embeds = embedder(post_tokenized_ids)
|
51 |
+
output_prompt_embeds = embedder(output_tokenized_ids)
|
52 |
+
|
53 |
+
combined_embeds = torch.cat([pre_prompt_embeds, speech_embeds, post_prompt_embeds, output_prompt_embeds], dim=1)
|
54 |
+
atts = torch.ones(combined_embeds.size()[:-1], dtype=torch.long).to(combined_embeds.device)
|
55 |
+
|
56 |
+
input_token_length = pre_tokenized_ids.shape[1] + speech_embeds.shape[1] + post_tokenized_ids.shape[1]
|
57 |
+
label_ids = torch.cat([
|
58 |
+
torch.ones([batch_size, input_token_length], device=combined_embeds.device)*-100,
|
59 |
+
output_tokenized_ids
|
60 |
+
], 1).to(combined_embeds.device).to(torch.int64)
|
61 |
+
return combined_embeds, atts, label_ids
|
62 |
+
|
63 |
+
def forward(self, embeds, atts, label_ids):
|
64 |
+
return self.llm_model(
|
65 |
+
inputs_embeds=embeds,
|
66 |
+
attention_mask=atts,
|
67 |
+
labels=label_ids,
|
68 |
+
)
|