Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
from diffusers import StableDiffusionXLPipeline | |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
import torch | |
from PIL import Image | |
import diffusers | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
torch_dtype=torch.float32, | |
variants="fp32", | |
use_safetensor=True, | |
) | |
pipe.to(device) | |
def call( | |
pipe, | |
prompt: Union[str, List[str]] = None, | |
prompt2: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
denoising_end: Optional[float] = None, | |
guidance_scale: float = 5.0, | |
guidance_scale2: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt2: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
negative_original_size: Optional[Tuple[int, int]] = None, | |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
negative_target_size: Optional[Tuple[int, int]] = None, | |
): | |
# 0. Default height and width to unet | |
height = height or pipe.default_sample_size * pipe.vae_scale_factor | |
width = width or pipe.default_sample_size * pipe.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
pipe.check_inputs( | |
prompt, | |
None, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
None, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = pipe._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
negative_pooled_prompt_embeds=None, | |
lora_scale=text_encoder_lora_scale, | |
) | |
( | |
prompt2_embeds, | |
negative_prompt2_embeds, | |
pooled_prompt2_embeds, | |
negative_pooled_prompt2_embeds, | |
) = pipe.encode_prompt( | |
prompt=prompt2, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt2, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
negative_pooled_prompt_embeds=None, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Prepare timesteps | |
pipe.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = pipe.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = pipe.unet.config.in_channels | |
latents = pipe.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = pipe.prepare_extra_step_kwargs(generator, eta) | |
# 7. Prepare added time ids & embeddings | |
add_text_embeds = pooled_prompt_embeds | |
add_text2_embeds = pooled_prompt2_embeds | |
add_time_ids = pipe._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | |
) | |
add_time2_ids = pipe._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=prompt2_embeds.dtype | |
) | |
if negative_original_size is not None and negative_target_size is not None: | |
negative_add_time_ids = pipe._get_add_time_ids( | |
negative_original_size, | |
negative_crops_coords_top_left, | |
negative_target_size, | |
dtype=prompt_embeds.dtype, | |
) | |
else: | |
negative_add_time_ids = add_time_ids | |
negative_add_time2_ids = add_time2_ids | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
prompt2_embeds = torch.cat([negative_prompt2_embeds, prompt2_embeds], dim=0) | |
add_text2_embeds = torch.cat([negative_pooled_prompt2_embeds, add_text2_embeds], dim=0) | |
add_time2_ids = torch.cat([negative_add_time2_ids, add_time2_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
prompt2_embeds = prompt2_embeds.to(device) | |
add_text2_embeds = add_text2_embeds.to(device) | |
add_time2_ids = add_time2_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
# 8. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0) | |
# 7.1 Apply denoising_end | |
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: | |
discrete_timestep_cutoff = int( | |
round( | |
pipe.scheduler.config.num_train_timesteps | |
- (denoising_end * pipe.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
timesteps = timesteps[:num_inference_steps] | |
with pipe.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if i % 2 == 0: | |
# expand the latents if we are doing classifier-free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
noise_pred = pipe.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
else: | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input2 = torch.cat([latents.flip(2)] * 2) if do_classifier_free_guidance else latents | |
latent_model_input2 = pipe.scheduler.scale_model_input(latent_model_input2, t) | |
# predict the noise residual | |
added_cond2_kwargs = {"text_embeds": add_text2_embeds, "time_ids": add_time2_ids} | |
noise_pred2 = pipe.unet( | |
latent_model_input2, | |
t, | |
encoder_hidden_states=prompt2_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond2_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred2_uncond, noise_pred2_text = noise_pred2.chunk(2) | |
noise_pred2 = noise_pred2_uncond + guidance_scale2 * (noise_pred2_text - noise_pred2_uncond) | |
noise_pred = noise_pred if i % 2 == 0 else noise_pred2.flip(2) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
if not output_type == "latent": | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
needs_upcasting = pipe.vae.dtype == torch.float16 and pipe.vae.config.force_upcast | |
if needs_upcasting: | |
pipe.upcast_vae() | |
latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype) | |
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
pipe.vae.to(dtype=torch.float16) | |
else: | |
image = latents | |
if not output_type == "latent": | |
# apply watermark if available | |
if pipe.watermark is not None: | |
image = pipe.watermark.apply_watermark(image) | |
image = pipe.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
pipe.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return StableDiffusionXLPipelineOutput(images=image) | |
def read_content(file_path: str) -> str: | |
"""read the content of target file | |
""" | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
def predict(dict, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"): | |
if negative_prompt == "": | |
negative_prompt = None | |
scheduler_class_name = scheduler.split("-")[0] | |
add_kwargs = {} | |
if len(scheduler.split("-")) > 1: | |
add_kwargs["use_karras"] = True | |
if len(scheduler.split("-")) > 2: | |
add_kwargs["algorithm_type"] = "sde-dpmsolver++" | |
scheduler = getattr(diffusers, scheduler_class_name) | |
pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs) | |
init_image = dict["image"].convert("RGB").resize((1024, 1024)) | |
mask = dict["mask"].convert("RGB").resize((1024, 1024)) | |
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength) | |
return output.images[0], gr.update(visible=True) | |
css = ''' | |
.gradio-container{max-width: 1100px !important} | |
#image_upload{min-height:400px} | |
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} | |
#mask_radio .gr-form{background:transparent; border: none} | |
#word_mask{margin-top: .75em !important} | |
#word_mask textarea:disabled{opacity: 0.3} | |
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} | |
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} | |
.dark .footer {border-color: #303030} | |
.dark .footer>p {background: #0b0f19} | |
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} | |
#image_upload .touch-none{display: flex} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;} | |
div#share-btn-container > div {flex-direction: row;background: black;align-items: center} | |
#share-btn-container:hover {background-color: #060606} | |
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;} | |
#share-btn * {all: unset} | |
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;} | |
#share-btn-container .wrap {display: none !important} | |
#share-btn-container.hidden {display: none!important} | |
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} | |
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px; | |
border-top-left-radius: 0px;} | |
#prompt-container{margin-top:-18px;} | |
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} | |
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px} | |
''' | |
image_blocks = gr.Blocks(css=css, elem_id="total-container") | |
with image_blocks as demo: | |
gr.HTML(read_content("header.html")) | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload",height=400) | |
with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True): | |
with gr.Row(): | |
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt") | |
btn = gr.Button("Inpaint!", elem_id="run_button") | |
with gr.Accordion(label="Advanced Settings", open=False): | |
with gr.Row(mobile_collapse=False, equal_height=True): | |
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale") | |
steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps") | |
strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength") | |
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image") | |
with gr.Row(mobile_collapse=False, equal_height=True): | |
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"] | |
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler") | |
with gr.Column(): | |
image_out = gr.Image(label="Output", elem_id="output-img", height=400) | |
with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container: | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn",visible=True) | |
btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container], api_name='run') | |
prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container]) | |
share_button.click(None, [], [], _js=share_js) | |
gr.Examples( | |
examples=[ | |
["./imgs/aaa (8).png"], | |
["./imgs/download (1).jpeg"], | |
["./imgs/0_oE0mLhfhtS_3Nfm2.png"], | |
["./imgs/02_HubertyBlog-1-1024x1024.jpg"], | |
["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"], | |
["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"], | |
["./imgs/canam-electric-motorcycles-scaled.jpg"], | |
["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"], | |
["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"], | |
["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"], | |
], | |
fn=predict, | |
inputs=[image], | |
cache_examples=False, | |
) | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face | |
</p> | |
</div> | |
""" | |
) | |
image_blocks.queue(max_size=25).launch() |