File size: 55,101 Bytes
c337225 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 |
"""
This file serves as a standalone evaluation provider for evaluating the predictions of a entity linking system.
The content of this module are taken from https://github.com/nicola-decao/efficient-autoregressive-EL and the necessary
boilerplate code is copied along with the metric classes to help the code act as standalone.
To perform evaluation, import the following classes (or any subset of the evaluation metrics that you need):
MicroF1, MicroPrecision, MicroRecall, MacroRecall, MacroPrecision, MacroF1
Collect the el_model predictions in the format of {(start_index, end_index, annotation string)} for document d.
Collect the gold dataset annotations in the format of {(start_index, end_index, annotation string)} for document d.
Call the metric instances for the two mentioned sets p and g:
micro_f1(p, g)
micro_prec(p, g)
micro_rec(p, g)
macro_f1(p, g)
macro_prec(p, g)
macro_rec(p, g)
Once you are done with all the documents and all predictions are added, you may access the evaluation results using:
{'macro_f1': macro_f1.compute(),
'macro_prec': macro_prec.compute(),
'macro_rec': macro_rec.compute(),
'micro_f1': micro_f1.compute(),
'micro_prec': micro_prec.compute(),
'micro_rec': micro_rec.compute()}
"""
from abc import ABC, abstractmethod
from typing import Any, Dict, Hashable, Iterable, Generator, Sequence, Tuple, Union, List, Mapping, Callable, Optional
import operator as op
import functools
import torch
import torch.nn as nn
from torch import Tensor
import torch.nn.functional as F
from contextlib import contextmanager
import inspect
from collections import OrderedDict
from copy import deepcopy
from importlib import import_module
from importlib.util import find_spec
from packaging.version import Version
from pkg_resources import DistributionNotFound, get_distribution
def dim_zero_sum(x: Tensor) -> Tensor:
"""summation along the zero dimension."""
return torch.sum(x, dim=0)
def dim_zero_mean(x: Tensor) -> Tensor:
"""average along the zero dimension."""
return torch.mean(x, dim=0)
def dim_zero_max(x: Tensor) -> Tensor:
"""max along the zero dimension."""
return torch.max(x, dim=0).values
def dim_zero_min(x: Tensor) -> Tensor:
"""min along the zero dimension."""
return torch.min(x, dim=0).values
def dim_zero_cat(x: Union[Tensor, List[Tensor]]) -> Tensor:
"""concatenation along the zero dimension."""
x = x if isinstance(x, (list, tuple)) else [x]
x = [y.unsqueeze(0) if y.numel() == 1 and y.ndim == 0 else y for y in x]
if not x: # empty list
raise ValueError("No samples to concatenate")
return torch.cat(x, dim=0)
def _module_available(module_path: str) -> bool:
try:
return find_spec(module_path) is not None
except AttributeError:
# Python 3.6
return False
except ModuleNotFoundError:
# Python 3.7+
return False
def _compare_version(package: str, op: Callable, version: str) -> Optional[bool]:
if not _module_available(package):
return None
try:
pkg = import_module(package)
pkg_version = pkg.__version__ # type: ignore
except (ModuleNotFoundError, DistributionNotFound):
return None
except ImportError:
# catches cyclic imports - the case with integrated libs
# see: https://stackoverflow.com/a/32965521
pkg_version = get_distribution(package).version
try:
pkg_version = Version(pkg_version)
except TypeError:
# this is mock by sphinx, so it shall return True ro generate all summaries
return True
return op(pkg_version, Version(version))
class TorchMetricsUserError(Exception):
"""Error used to inform users of a wrong combinison of Metric API calls."""
def _simple_gather_all_tensors(result: Tensor, group: Any, world_size: int) -> List[Tensor]:
gathered_result = [torch.zeros_like(result) for _ in range(world_size)]
torch.distributed.all_gather(gathered_result, result, group)
return gathered_result
def gather_all_tensors(result: Tensor, group: Optional[Any] = None) -> List[Tensor]:
"""Function to gather all tensors from several ddp processes onto a list that is broadcasted to all processes.
Works on tensors that have the same number of dimensions, but where each dimension may differ. In this case
tensors are padded, gathered and then trimmed to secure equal workload for all processes.
Args:
result: the value to sync
group: the process group to gather results from. Defaults to all processes (world)
Return:
gathered_result: list with size equal to the process group where
gathered_result[i] corresponds to result tensor from process i
"""
if group is None:
group = torch.distributed.group.WORLD
# convert tensors to contiguous format
result = result.contiguous()
world_size = torch.distributed.get_world_size(group)
torch.distributed.barrier(group=group)
# if the tensor is scalar, things are easy
if result.ndim == 0:
return _simple_gather_all_tensors(result, group, world_size)
# 1. Gather sizes of all tensors
local_size = torch.tensor(result.shape, device=result.device)
local_sizes = [torch.zeros_like(local_size) for _ in range(world_size)]
torch.distributed.all_gather(local_sizes, local_size, group=group)
max_size = torch.stack(local_sizes).max(dim=0).values
all_sizes_equal = all(all(ls == max_size) for ls in local_sizes)
# 2. If shapes are all the same, then do a simple gather:
if all_sizes_equal:
return _simple_gather_all_tensors(result, group, world_size)
# 3. If not, we need to pad each local tensor to maximum size, gather and then truncate
pad_dims = []
pad_by = (max_size - local_size).detach().cpu()
for val in reversed(pad_by):
pad_dims.append(0)
pad_dims.append(val.item())
result_padded = F.pad(result, pad_dims)
gathered_result = [torch.zeros_like(result_padded) for _ in range(world_size)]
torch.distributed.all_gather(gathered_result, result_padded, group)
for idx, item_size in enumerate(local_sizes):
slice_param = [slice(dim_size) for dim_size in item_size]
gathered_result[idx] = gathered_result[idx][slice_param]
return gathered_result
def apply_to_collection(
data: Any,
dtype: Union[type, tuple],
function: Callable,
*args: Any,
wrong_dtype: Optional[Union[type, tuple]] = None,
**kwargs: Any,
) -> Any:
"""Recursively applies a function to all elements of a certain dtype.
Args:
data: the collection to apply the function to
dtype: the given function will be applied to all elements of this dtype
function: the function to apply
*args: positional arguments (will be forwarded to calls of ``function``)
wrong_dtype: the given function won't be applied if this type is specified and the given collections is of
the :attr:`wrong_type` even if it is of type :attr`dtype`
**kwargs: keyword arguments (will be forwarded to calls of ``function``)
Returns:
the resulting collection
Example:
>>> apply_to_collection(torch.tensor([8, 0, 2, 6, 7]), dtype=Tensor, function=lambda x: x ** 2)
tensor([64, 0, 4, 36, 49])
>>> apply_to_collection([8, 0, 2, 6, 7], dtype=int, function=lambda x: x ** 2)
[64, 0, 4, 36, 49]
>>> apply_to_collection(dict(abc=123), dtype=int, function=lambda x: x ** 2)
{'abc': 15129}
"""
elem_type = type(data)
# Breaking condition
if isinstance(data, dtype) and (wrong_dtype is None or not isinstance(data, wrong_dtype)):
return function(data, *args, **kwargs)
# Recursively apply to collection items
if isinstance(data, Mapping):
return elem_type({k: apply_to_collection(v, dtype, function, *args, **kwargs) for k, v in data.items()})
if isinstance(data, tuple) and hasattr(data, "_fields"): # named tuple
return elem_type(*(apply_to_collection(d, dtype, function, *args, **kwargs) for d in data))
if isinstance(data, Sequence) and not isinstance(data, str):
return elem_type([apply_to_collection(d, dtype, function, *args, **kwargs) for d in data])
# data is neither of dtype, nor a collection
return data
def _flatten(x: Sequence) -> list:
return [item for sublist in x for item in sublist]
def jit_distributed_available() -> bool:
return torch.distributed.is_available() and torch.distributed.is_initialized()
class _Metric(nn.Module, ABC):
__jit_ignored_attributes__ = ["device"]
__jit_unused_properties__ = ["is_differentiable"]
is_differentiable: Optional[bool] = None
higher_is_better: Optional[bool] = None
def __init__(
self,
compute_on_step: bool = True,
dist_sync_on_step: bool = False,
process_group: Optional[Any] = None,
dist_sync_fn: Callable = None,
) -> None:
super().__init__()
# see (https://github.com/pytorch/pytorch/blob/3e6bb5233f9ca2c5aa55d9cda22a7ee85439aa6e/
# torch/nn/modules/module.py#L227)
torch._C._log_api_usage_once(f"torchmetrics.metric.{self.__class__.__name__}")
self._LIGHTNING_GREATER_EQUAL_1_3 = _compare_version("pytorch_lightning", op.ge, "1.3.0")
self._device = torch.device("cpu")
self.dist_sync_on_step = dist_sync_on_step
self.compute_on_step = compute_on_step
self.process_group = process_group
self.dist_sync_fn = dist_sync_fn
self._to_sync = True
self._should_unsync = True
self._update_signature = inspect.signature(self.update)
self.update: Callable = self._wrap_update(self.update) # type: ignore
self.compute: Callable = self._wrap_compute(self.compute) # type: ignore
self._computed = None
self._forward_cache = None
self._update_called = False
# initialize state
self._defaults: Dict[str, Union[List, Tensor]] = {}
self._persistent: Dict[str, bool] = {}
self._reductions: Dict[str, Union[str, Callable[[Union[List[Tensor], Tensor]], Tensor], None]] = {}
# state management
self._is_synced = False
self._cache: Optional[Dict[str, Union[List[Tensor], Tensor]]] = None
def add_state(
self,
name: str,
default: Union[list, Tensor],
dist_reduce_fx: Optional[Union[str, Callable]] = None,
persistent: bool = False,
) -> None:
if not isinstance(default, (Tensor, list)) or (isinstance(default, list) and default):
raise ValueError("state variable must be a tensor or any empty list (where you can append tensors)")
if dist_reduce_fx == "sum":
dist_reduce_fx = dim_zero_sum
elif dist_reduce_fx == "mean":
dist_reduce_fx = dim_zero_mean
elif dist_reduce_fx == "max":
dist_reduce_fx = dim_zero_max
elif dist_reduce_fx == "min":
dist_reduce_fx = dim_zero_min
elif dist_reduce_fx == "cat":
dist_reduce_fx = dim_zero_cat
elif dist_reduce_fx is not None and not callable(dist_reduce_fx):
raise ValueError("`dist_reduce_fx` must be callable or one of ['mean', 'sum', 'cat', None]")
if isinstance(default, Tensor):
default = default.contiguous()
setattr(self, name, default)
self._defaults[name] = deepcopy(default)
self._persistent[name] = persistent
self._reductions[name] = dist_reduce_fx
@torch.jit.unused
def forward(self, *args: Any, **kwargs: Any) -> Any:
"""Automatically calls ``update()``.
Returns the metric value over inputs if ``compute_on_step`` is True.
"""
# add current step
if self._is_synced:
raise TorchMetricsUserError(
"The Metric shouldn't be synced when performing ``update``. "
"HINT: Did you forget to call ``unsync`` ?."
)
with torch.no_grad():
self.update(*args, **kwargs)
if self.compute_on_step:
self._to_sync = self.dist_sync_on_step
# skip restore cache operation from compute as cache is stored below.
self._should_unsync = False
# save context before switch
cache = {attr: getattr(self, attr) for attr in self._defaults}
# call reset, update, compute, on single batch
self.reset()
self.update(*args, **kwargs)
self._forward_cache = self.compute()
# restore context
for attr, val in cache.items():
setattr(self, attr, val)
self._is_synced = False
self._should_unsync = True
self._to_sync = True
self._computed = None
return self._forward_cache
def _sync_dist(self, dist_sync_fn: Callable = gather_all_tensors, process_group: Optional[Any] = None) -> None:
input_dict = {attr: getattr(self, attr) for attr in self._reductions}
for attr, reduction_fn in self._reductions.items():
# pre-concatenate metric states that are lists to reduce number of all_gather operations
if reduction_fn == dim_zero_cat and isinstance(input_dict[attr], list) and len(input_dict[attr]) > 1:
input_dict[attr] = [dim_zero_cat(input_dict[attr])]
output_dict = apply_to_collection(
input_dict,
Tensor,
dist_sync_fn,
group=process_group or self.process_group,
)
for attr, reduction_fn in self._reductions.items():
# pre-processing ops (stack or flatten for inputs)
if isinstance(output_dict[attr][0], Tensor):
output_dict[attr] = torch.stack(output_dict[attr])
elif isinstance(output_dict[attr][0], list):
output_dict[attr] = _flatten(output_dict[attr])
if not (callable(reduction_fn) or reduction_fn is None):
raise TypeError("reduction_fn must be callable or None")
reduced = reduction_fn(output_dict[attr]) if reduction_fn is not None else output_dict[attr]
setattr(self, attr, reduced)
def _wrap_update(self, update: Callable) -> Callable:
@functools.wraps(update)
def wrapped_func(*args: Any, **kwargs: Any) -> Optional[Any]:
self._computed = None
self._update_called = True
return update(*args, **kwargs)
return wrapped_func
def sync(
self,
dist_sync_fn: Optional[Callable] = None,
process_group: Optional[Any] = None,
should_sync: bool = True,
distributed_available: Optional[Callable] = jit_distributed_available,
) -> None:
"""Sync function for manually controlling when metrics states should be synced across processes.
Args:
dist_sync_fn: Function to be used to perform states synchronization
process_group:
Specify the process group on which synchronization is called.
default: None (which selects the entire world)
should_sync: Whether to apply to state synchronization. This will have an impact
only when running in a distributed setting.
distributed_available: Function to determine if we are running inside a distributed setting
"""
if self._is_synced and should_sync:
raise TorchMetricsUserError("The Metric has already been synced.")
is_distributed = distributed_available() if callable(distributed_available) else None
if not should_sync or not is_distributed:
return
if dist_sync_fn is None:
dist_sync_fn = gather_all_tensors
# cache prior to syncing
self._cache = {attr: getattr(self, attr) for attr in self._defaults}
# sync
self._sync_dist(dist_sync_fn, process_group=process_group)
self._is_synced = True
def unsync(self, should_unsync: bool = True) -> None:
"""Unsync function for manually controlling when metrics states should be reverted back to their local
states.
Args:
should_unsync: Whether to perform unsync
"""
if not should_unsync:
return
if not self._is_synced:
raise TorchMetricsUserError("The Metric has already been un-synced.")
if self._cache is None:
raise TorchMetricsUserError("The internal cache should exist to unsync the Metric.")
# if we synced, restore to cache so that we can continue to accumulate un-synced state
for attr, val in self._cache.items():
setattr(self, attr, val)
self._is_synced = False
self._cache = None
@contextmanager
def sync_context(
self,
dist_sync_fn: Optional[Callable] = None,
process_group: Optional[Any] = None,
should_sync: bool = True,
should_unsync: bool = True,
distributed_available: Optional[Callable] = jit_distributed_available,
) -> Generator:
"""Context manager to synchronize the states between processes when running in a distributed setting and
restore the local cache states after yielding.
Args:
dist_sync_fn: Function to be used to perform states synchronization
process_group:
Specify the process group on which synchronization is called.
default: None (which selects the entire world)
should_sync: Whether to apply to state synchronization. This will have an impact
only when running in a distributed setting.
should_unsync: Whether to restore the cache state so that the metrics can
continue to be accumulated.
distributed_available: Function to determine if we are running inside a distributed setting
"""
self.sync(
dist_sync_fn=dist_sync_fn,
process_group=process_group,
should_sync=should_sync,
distributed_available=distributed_available,
)
yield
self.unsync(should_unsync=self._is_synced and should_unsync)
def _wrap_compute(self, compute: Callable) -> Callable:
@functools.wraps(compute)
def wrapped_func(*args: Any, **kwargs: Any) -> Any:
# return cached value
if self._computed is not None:
return self._computed
# compute relies on the sync context manager to gather the states across processes and apply reduction
# if synchronization happened, the current rank accumulated states will be restored to keep
# accumulation going if ``should_unsync=True``,
with self.sync_context(
dist_sync_fn=self.dist_sync_fn, should_sync=self._to_sync, should_unsync=self._should_unsync
):
self._computed = compute(*args, **kwargs)
return self._computed
return wrapped_func
@abstractmethod
def update(self, *_: Any, **__: Any) -> None:
"""Override this method to update the state variables of your metric class."""
@abstractmethod
def compute(self) -> Any:
"""Override this method to compute the final metric value from state variables synchronized across the
distributed backend."""
def reset(self) -> None:
"""This method automatically resets the metric state variables to their default value."""
self._update_called = False
self._forward_cache = None
# lower lightning versions requires this implicitly to log metric objects correctly in self.log
self._computed = None
for attr, default in self._defaults.items():
current_val = getattr(self, attr)
if isinstance(default, Tensor):
setattr(self, attr, default.detach().clone().to(current_val.device))
else:
setattr(self, attr, [])
# reset internal states
self._cache = None
self._is_synced = False
def clone(self) -> "_Metric":
"""Make a copy of the metric."""
return deepcopy(self)
def __getstate__(self) -> Dict[str, Any]:
# ignore update and compute functions for pickling
return {k: v for k, v in self.__dict__.items() if k not in ["update", "compute", "_update_signature"]}
def __setstate__(self, state: Dict[str, Any]) -> None:
# manually restore update and compute functions for pickling
self.__dict__.update(state)
self._update_signature = inspect.signature(self.update)
self.update: Callable = self._wrap_update(self.update) # type: ignore
self.compute: Callable = self._wrap_compute(self.compute) # type: ignore
def __setattr__(self, name: str, value: Any) -> None:
if name in ("higher_is_better", "is_differentiable"):
raise RuntimeError(f"Can't change const `{name}`.")
super().__setattr__(name, value)
@property
def device(self) -> "torch.device":
"""Return the device of the metric."""
return self._device
def type(self, dst_type: Union[str, torch.dtype]) -> "_Metric":
"""Method override default and prevent dtype casting.
Please use `metric.set_dtype(dtype)` instead.
"""
return self
def float(self) -> "_Metric":
"""Method override default and prevent dtype casting.
Please use `metric.set_dtype(dtype)` instead.
"""
return self
def double(self) -> "_Metric":
"""Method override default and prevent dtype casting.
Please use `metric.set_dtype(dtype)` instead.
"""
return self
def half(self) -> "_Metric":
"""Method override default and prevent dtype casting.
Please use `metric.set_dtype(dtype)` instead.
"""
return self
def set_dtype(self, dst_type: Union[str, torch.dtype]) -> None:
"""Special version of `type` for transferring all metric states to specific dtype
Arguments:
dst_type (type or string): the desired type
"""
return super().type(dst_type)
def _apply(self, fn: Callable) -> nn.Module:
"""Overwrite _apply function such that we can also move metric states to the correct device when `.to`,
`.cuda`, etc methods are called."""
this = super()._apply(fn)
# Also apply fn to metric states and defaults
for key, value in this._defaults.items():
if isinstance(value, Tensor):
this._defaults[key] = fn(value)
elif isinstance(value, Sequence):
this._defaults[key] = [fn(v) for v in value]
current_val = getattr(this, key)
if isinstance(current_val, Tensor):
setattr(this, key, fn(current_val))
elif isinstance(current_val, Sequence):
setattr(this, key, [fn(cur_v) for cur_v in current_val])
else:
raise TypeError(
"Expected metric state to be either a Tensor" f"or a list of Tensor, but encountered {current_val}"
)
# make sure to update the device attribute
# if the dummy tensor moves device by fn function we should also update the attribute
self._device = fn(torch.zeros(1, device=self.device)).device
# Additional apply to forward cache and computed attributes (may be nested)
if this._computed is not None:
this._computed = apply_to_collection(this._computed, Tensor, fn)
if this._forward_cache is not None:
this._forward_cache = apply_to_collection(this._forward_cache, Tensor, fn)
return this
def persistent(self, mode: bool = False) -> None:
"""Method for post-init to change if metric states should be saved to its state_dict."""
for key in self._persistent:
self._persistent[key] = mode
def state_dict(
self,
destination: Dict[str, Any] = None,
prefix: str = "",
keep_vars: bool = False,
) -> Optional[Dict[str, Any]]:
destination = super().state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)
# Register metric states to be part of the state_dict
for key in self._defaults:
if not self._persistent[key]:
continue
current_val = getattr(self, key)
if not keep_vars:
if isinstance(current_val, Tensor):
current_val = current_val.detach()
elif isinstance(current_val, list):
current_val = [cur_v.detach() if isinstance(cur_v, Tensor) else cur_v for cur_v in current_val]
destination[prefix + key] = deepcopy(current_val) # type: ignore
return destination
def _load_from_state_dict(
self,
state_dict: dict,
prefix: str,
local_metadata: dict,
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
) -> None:
"""Loads metric states from state_dict."""
for key in self._defaults:
name = prefix + key
if name in state_dict:
setattr(self, key, state_dict.pop(name))
super()._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
)
def _filter_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
"""filter kwargs such that they match the update signature of the metric."""
# filter all parameters based on update signature except those of
# type VAR_POSITIONAL (*args) and VAR_KEYWORD (**kwargs)
_params = (inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD)
_sign_params = self._update_signature.parameters
filtered_kwargs = {
k: v for k, v in kwargs.items() if (k in _sign_params.keys() and _sign_params[k].kind not in _params)
}
# if no kwargs filtered, return al kwargs as default
if not filtered_kwargs:
filtered_kwargs = kwargs
return filtered_kwargs
def __hash__(self) -> int:
# we need to add the id here, since PyTorch requires a module hash to be unique.
# Internally, PyTorch nn.Module relies on that for children discovery
# (see https://github.com/pytorch/pytorch/blob/v1.9.0/torch/nn/modules/module.py#L1544)
# For metrics that include tensors it is not a problem,
# since their hash is unique based on the memory location but we cannot rely on that for every metric.
hash_vals = [self.__class__.__name__, id(self)]
for key in self._defaults:
val = getattr(self, key)
# Special case: allow list values, so long
# as their elements are hashable
if hasattr(val, "__iter__") and not isinstance(val, Tensor):
hash_vals.extend(val)
else:
hash_vals.append(val)
return hash(tuple(hash_vals))
def __add__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.add, self, other)
def __and__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.bitwise_and, self, other)
# Fixme: this shall return bool instead of Metric
def __eq__(self, other: "Metric") -> "Metric": # type: ignore
return CompositionalMetric(torch.eq, self, other)
def __floordiv__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.floor_divide, self, other)
def __ge__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.ge, self, other)
def __gt__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.gt, self, other)
def __le__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.le, self, other)
def __lt__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.lt, self, other)
def __matmul__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.matmul, self, other)
def __mod__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.fmod, self, other)
def __mul__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.mul, self, other)
# Fixme: this shall return bool instead of Metric
def __ne__(self, other: "Metric") -> "Metric": # type: ignore
return CompositionalMetric(torch.ne, self, other)
def __or__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.bitwise_or, self, other)
def __pow__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.pow, self, other)
def __radd__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.add, other, self)
def __rand__(self, other: "Metric") -> "Metric":
# swap them since bitwise_and only supports that way and it's commutative
return CompositionalMetric(torch.bitwise_and, self, other)
def __rfloordiv__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.floor_divide, other, self)
def __rmatmul__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.matmul, other, self)
def __rmod__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.fmod, other, self)
def __rmul__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.mul, other, self)
def __ror__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.bitwise_or, other, self)
def __rpow__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.pow, other, self)
def __rsub__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.sub, other, self)
def __rtruediv__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.true_divide, other, self)
def __rxor__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.bitwise_xor, other, self)
def __sub__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.sub, self, other)
def __truediv__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.true_divide, self, other)
def __xor__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.bitwise_xor, self, other)
def __abs__(self) -> "Metric":
return CompositionalMetric(torch.abs, self, None)
def __inv__(self) -> "Metric":
return CompositionalMetric(torch.bitwise_not, self, None)
def __invert__(self) -> "Metric":
return self.__inv__()
def __neg__(self) -> "Metric":
return CompositionalMetric(_neg, self, None)
def __pos__(self) -> "Metric":
return CompositionalMetric(torch.abs, self, None)
def __getitem__(self, idx: int) -> "Metric":
return CompositionalMetric(lambda x: x[idx], self, None)
class CompositionalMetric(_Metric):
"""Composition of two metrics with a specific operator which will be executed upon metrics compute."""
def __init__(
self,
operator: Callable,
metric_a: Union[_Metric, int, float, Tensor],
metric_b: Union[_Metric, int, float, Tensor, None],
) -> None:
"""
Args:
operator: the operator taking in one (if metric_b is None)
or two arguments. Will be applied to outputs of metric_a.compute()
and (optionally if metric_b is not None) metric_b.compute()
metric_a: first metric whose compute() result is the first argument of operator
metric_b: second metric whose compute() result is the second argument of operator.
For operators taking in only one input, this should be None
"""
super().__init__()
self.op = operator
if isinstance(metric_a, Tensor):
self.register_buffer("metric_a", metric_a)
else:
self.metric_a = metric_a
if isinstance(metric_b, Tensor):
self.register_buffer("metric_b", metric_b)
else:
self.metric_b = metric_b
def _sync_dist(self, dist_sync_fn: Optional[Callable] = None, process_group: Optional[Any] = None) -> None:
# No syncing required here. syncing will be done in metric_a and metric_b
pass
def update(self, *args: Any, **kwargs: Any) -> None:
if isinstance(self.metric_a, Metric):
self.metric_a.update(*args, **self.metric_a._filter_kwargs(**kwargs))
if isinstance(self.metric_b, Metric):
self.metric_b.update(*args, **self.metric_b._filter_kwargs(**kwargs))
def compute(self) -> Any:
# also some parsing for kwargs?
if isinstance(self.metric_a, Metric):
val_a = self.metric_a.compute()
else:
val_a = self.metric_a
if isinstance(self.metric_b, Metric):
val_b = self.metric_b.compute()
else:
val_b = self.metric_b
if val_b is None:
return self.op(val_a)
return self.op(val_a, val_b)
def reset(self) -> None:
if isinstance(self.metric_a, Metric):
self.metric_a.reset()
if isinstance(self.metric_b, Metric):
self.metric_b.reset()
def persistent(self, mode: bool = False) -> None:
if isinstance(self.metric_a, Metric):
self.metric_a.persistent(mode=mode)
if isinstance(self.metric_b, Metric):
self.metric_b.persistent(mode=mode)
def __repr__(self) -> str:
_op_metrics = f"(\n {self.op.__name__}(\n {repr(self.metric_a)},\n {repr(self.metric_b)}\n )\n)"
repr_str = self.__class__.__name__ + _op_metrics
return repr_str
class MetricCollection_(nn.ModuleDict):
def __init__(
self,
metrics: Union[_Metric, Sequence[_Metric], Dict[str, _Metric]],
*additional_metrics: _Metric,
prefix: Optional[str] = None,
postfix: Optional[str] = None,
) -> None:
super().__init__()
self.add_metrics(metrics, *additional_metrics)
self.prefix = self._check_arg(prefix, "prefix")
self.postfix = self._check_arg(postfix, "postfix")
@torch.jit.unused
def forward(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
"""Iteratively call forward for each metric.
Positional arguments (args) will be passed to every metric in the collection, while keyword arguments (kwargs)
will be filtered based on the signature of the individual metric.
"""
return {k: m(*args, **m._filter_kwargs(**kwargs)) for k, m in self.items()}
def update(self, *args: Any, **kwargs: Any) -> None:
"""Iteratively call update for each metric.
Positional arguments (args) will be passed to every metric in the collection, while keyword arguments (kwargs)
will be filtered based on the signature of the individual metric.
"""
for _, m in self.items(keep_base=True):
m_kwargs = m._filter_kwargs(**kwargs)
m.update(*args, **m_kwargs)
def compute(self) -> Dict[str, Any]:
return {k: m.compute() for k, m in self.items()}
def reset(self) -> None:
"""Iteratively call reset for each metric."""
for _, m in self.items(keep_base=True):
m.reset()
def clone(self, prefix: Optional[str] = None, postfix: Optional[str] = None) -> "MetricCollection_":
"""Make a copy of the metric collection
Args:
prefix: a string to append in front of the metric keys
postfix: a string to append after the keys of the output dict
"""
mc = deepcopy(self)
if prefix:
mc.prefix = self._check_arg(prefix, "prefix")
if postfix:
mc.postfix = self._check_arg(postfix, "postfix")
return mc
def persistent(self, mode: bool = True) -> None:
"""Method for post-init to change if metric states should be saved to its state_dict."""
for _, m in self.items(keep_base=True):
m.persistent(mode)
def add_metrics(
self, metrics: Union[_Metric, Sequence[_Metric], Dict[str, _Metric]], *additional_metrics: _Metric
) -> None:
"""Add new metrics to Metric Collection."""
if isinstance(metrics, Metric):
# set compatible with original type expectations
metrics = [metrics]
if isinstance(metrics, Sequence):
# prepare for optional additions
metrics = list(metrics)
remain: list = []
for m in additional_metrics:
(metrics if isinstance(m, Metric) else remain).append(m)
elif additional_metrics:
raise ValueError(
f"You have passes extra arguments {additional_metrics} which are not compatible"
f" with first passed dictionary {metrics} so they will be ignored."
)
if isinstance(metrics, dict):
# Check all values are metrics
# Make sure that metrics are added in deterministic order
for name in sorted(metrics.keys()):
metric = metrics[name]
if not isinstance(metric, Metric):
raise ValueError(
f"Value {metric} belonging to key {name} is not an instance of `pl.metrics.Metric`"
)
self[name] = metric
elif isinstance(metrics, Sequence):
for metric in metrics:
if not isinstance(metric, Metric):
raise ValueError(f"Input {metric} to `MetricCollection` is not a instance of `pl.metrics.Metric`")
name = metric.__class__.__name__
if name in self:
raise ValueError(f"Encountered two metrics both named {name}")
self[name] = metric
else:
raise ValueError("Unknown input to MetricCollection.")
def _set_name(self, base: str) -> str:
name = base if self.prefix is None else self.prefix + base
name = name if self.postfix is None else name + self.postfix
return name
def _to_renamed_ordered_dict(self) -> OrderedDict:
od = OrderedDict()
for k, v in self._modules.items():
od[self._set_name(k)] = v
return od
def keys(self, keep_base: bool = False) -> Iterable[Hashable]:
r"""Return an iterable of the ModuleDict key.
Args:
keep_base: Whether to add prefix/postfix on the items collection.
"""
if keep_base:
return self._modules.keys()
return self._to_renamed_ordered_dict().keys()
def items(self, keep_base: bool = False) -> Iterable[Tuple[str, nn.Module]]:
r"""Return an iterable of the ModuleDict key/value pairs.
Args:
keep_base: Whether to add prefix/postfix on the items collection.
"""
if keep_base:
return self._modules.items()
return self._to_renamed_ordered_dict().items()
@staticmethod
def _check_arg(arg: Optional[str], name: str) -> Optional[str]:
if arg is None or isinstance(arg, str):
return arg
raise ValueError(f"Expected input `{name}` to be a string, but got {type(arg)}")
def __repr__(self) -> str:
repr_str = super().__repr__()[:-2]
if self.prefix:
repr_str += f",\n prefix={self.prefix}{',' if self.postfix else ''}"
if self.postfix:
repr_str += f"{',' if not self.prefix else ''}\n postfix={self.postfix}"
return repr_str + "\n)"
class Metric(_Metric):
r"""
This implementation refers to :class:`~torchmetrics.Metric`.
.. warning:: This metric is deprecated, use ``torchmetrics.Metric``. Will be removed in v1.5.0.
"""
def __init__(
self,
compute_on_step: bool = True,
dist_sync_on_step: bool = False,
process_group: Optional[Any] = None,
dist_sync_fn: Callable = None,
):
super().__init__(
compute_on_step=compute_on_step,
dist_sync_on_step=dist_sync_on_step,
process_group=process_group,
dist_sync_fn=dist_sync_fn,
)
def __hash__(self):
return super().__hash__()
def __add__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.add, self, other)
def __and__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.bitwise_and, self, other)
def __eq__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.eq, self, other)
def __floordiv__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.floor_divide, self, other)
def __ge__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.ge, self, other)
def __gt__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.gt, self, other)
def __le__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.le, self, other)
def __lt__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.lt, self, other)
def __matmul__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.matmul, self, other)
def __mod__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.fmod, self, other)
def __mul__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.mul, self, other)
def __ne__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.ne, self, other)
def __or__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.bitwise_or, self, other)
def __pow__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.pow, self, other)
def __radd__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.add, other, self)
def __rand__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
# swap them since bitwise_and only supports that way and it's commutative
return CompositionalMetric(torch.bitwise_and, self, other)
def __rfloordiv__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.floor_divide, other, self)
def __rmatmul__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.matmul, other, self)
def __rmod__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.fmod, other, self)
def __rmul__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.mul, other, self)
def __ror__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.bitwise_or, other, self)
def __rpow__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.pow, other, self)
def __rsub__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.sub, other, self)
def __rtruediv__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.true_divide, other, self)
def __rxor__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.bitwise_xor, other, self)
def __sub__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.sub, self, other)
def __truediv__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.true_divide, self, other)
def __xor__(self, other: Any):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.bitwise_xor, self, other)
def __abs__(self):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.abs, self, None)
def __inv__(self):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.bitwise_not, self, None)
def __invert__(self):
return self.__inv__()
def __neg__(self):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(_neg, self, None)
def __pos__(self):
from pytorch_lightning.metrics.compositional import CompositionalMetric
return CompositionalMetric(torch.abs, self, None)
def _neg(tensor: torch.Tensor):
return -torch.abs(tensor)
class MicroF1(Metric):
def __init__(self, dist_sync_on_step=False):
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.add_state("n", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("prec_d", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("rec_d", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, p, g):
self.n += len(g.intersection(p))
self.prec_d += len(p)
self.rec_d += len(g)
def compute(self):
p = self.n.float() / self.prec_d
r = self.n.float() / self.rec_d
return (2 * p * r / (p + r)) if (p + r) > 0 else (p + r)
class MacroF1(Metric):
def __init__(self, dist_sync_on_step=False):
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.add_state("n", default=torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("d", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, p, g):
prec = len(g.intersection(p)) / len(p)
rec = len(g.intersection(p)) / len(g) if g else 0.0
self.n += (2 * prec * rec / (prec + rec)) if (prec + rec) > 0 else (prec + rec)
self.d += 1
def compute(self):
return (self.n / self.d) if self.d > 0 else self.d
class MicroPrecision(Metric):
def __init__(self, dist_sync_on_step=False):
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.add_state("n", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("d", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, p, g):
self.n += len(g.intersection(p))
self.d += len(p)
def compute(self):
return (self.n.float() / self.d) if self.d > 0 else self.d
class MacroPrecision(Metric):
def __init__(self, dist_sync_on_step=False):
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.add_state("n", default=torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("d", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, p, g):
self.n += len(g.intersection(p)) / len(p)
self.d += 1
def compute(self):
return (self.n / self.d) if self.d > 0 else self.d
class MicroRecall(Metric):
def __init__(self, dist_sync_on_step=False):
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.add_state("n", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("d", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, p, g):
self.n += len(g.intersection(p))
self.d += len(g)
def compute(self):
return (self.n.float() / self.d) if self.d > 0 else self.d
class MacroRecall(Metric):
def __init__(self, dist_sync_on_step=False):
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.add_state("n", default=torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("d", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, p, g):
self.n += len(g.intersection(p)) / len(g) if g else 0.0
self.d += 1
def compute(self):
return (self.n / self.d) if self.d > 0 else self.d
# The following two classes are not inherited from https://github.com/nicola-decao/efficient-autoregressive-EL
# and are implemented in this project.
class _EvaluationScores:
def __init__(self, is_micro):
self.is_micro = is_micro
if is_micro:
self.f1 = MicroF1()
self.p = MicroPrecision()
self.r = MicroRecall()
else:
self.f1 = MacroF1()
self.p = MacroPrecision()
self.r = MacroRecall()
def record_results(self, prediction, gold):
self.f1(prediction, gold)
self.p(prediction, gold)
self.r(prediction, gold)
def __str__(self):
im = "Micro" if self.is_micro else "Macro"
return f"\t{im} evaluation results: F1: {self.f1.compute() * 100:.3f}%\tP: {self.p.compute() * 100:.3f}%" \
f"\t R: {self.r.compute() * 100:.3f}%"
class EntityEvaluationScores:
def __init__(self, dataset_name):
self.dataset_name = dataset_name
self.micro_mention_detection = _EvaluationScores(True)
self.macro_mention_detection = _EvaluationScores(False)
self.micro_entity_linking = _EvaluationScores(True)
self.macro_entity_linking = _EvaluationScores(False)
def record_mention_detection_results(self, prediction, gold):
self.micro_mention_detection.record_results(prediction, gold)
self.macro_mention_detection.record_results(prediction, gold)
def record_entity_linking_results(self, prediction, gold):
self.micro_entity_linking.record_results(prediction, gold)
self.macro_entity_linking.record_results(prediction, gold)
def __str__(self):
return f"Evaluated model for set: {self.dataset_name} (Entity Linking)\n" \
f"{str(self.macro_entity_linking)}\n" \
f"{str(self.micro_entity_linking)}\n" \
f"Evaluated model for set: {self.dataset_name} (Mention Detection)\n" \
f"{str(self.macro_mention_detection)}\n" \
f"{str(self.micro_mention_detection)}"
class InOutMentionEvaluationResult:
def __init__(self, activation_threshold=0.5, vocab_index_of_o=-1):
self.activation_threshold = activation_threshold
self.vocab_index_of_o = vocab_index_of_o
self.total_predictions = 0.0
self.correct_predictions = 0.0
self.total_true_predictions = 0.0
self.correct_true_predictions = 0.0
self.total_false_predictions = 0.0
self.correct_false_predictions = 0.0
def _preprocess_logits(self, subword_logits):
if self.vocab_index_of_o > -1:
return (subword_logits.argmax(-1) != self.vocab_index_of_o).bool()
else:
return (subword_logits > self.activation_threshold).squeeze(-1)
def update_scores(self, inputs_eval_mask, s_mentions_is_in_mention, subword_logits):
self.total_predictions += inputs_eval_mask.sum().item()
for em, ac, pr in zip(inputs_eval_mask, s_mentions_is_in_mention.bool(),
self._preprocess_logits(subword_logits)):
for m, a, p in zip(em, ac, pr):
if m:
if a == p:
self.correct_predictions += 1.0
if a:
self.total_true_predictions += 1.0
if p:
self.correct_true_predictions += 1.0
else:
self.total_false_predictions += 1.0
if not p:
self.correct_false_predictions += 1.0
@property
def overall_mention_detection_accuracy(self):
return self.correct_predictions * 100 / self.total_predictions if self.total_predictions > 0.0 else 0.0
@property
def in_mention_mention_detection_accuracy(self):
return self.correct_true_predictions * 100 / self.total_true_predictions \
if self.total_true_predictions > 0.0 else 0.0
@property
def out_of_mention_overall_mention_detection_accuracy(self):
return self.correct_false_predictions * 100 / self.total_false_predictions \
if self.total_false_predictions > 0.0 else 0.0
def __str__(self):
return f"Subword-level mention detection accuracy = {self.overall_mention_detection_accuracy:.3f}% " \
f"({int(self.correct_predictions)}/{int(self.total_predictions)})\n" \
f"\t In-Mention Subword-level mention detection accuracy = " \
f"{self.in_mention_mention_detection_accuracy:.3f}% " \
f"({int(self.correct_true_predictions)}/{int(self.total_true_predictions)})\n" \
f"\tOut-of-Mention Subword-level mention detection accuracy = " \
f"{self.out_of_mention_overall_mention_detection_accuracy:.3f}% " \
f"({int(self.correct_false_predictions)}/{int(self.total_false_predictions)})"
|