import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality") tokenizer = AutoTokenizer.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality") import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #print ("device ",device) model = model.to(device)# Diverse Beam search #print ("\n\n") #print ("Original: ",context) def generate_text(inp): context = inp text = "paraphrase: "+context + " " encoding = tokenizer.encode_plus(text,max_length =128, padding=True, return_tensors="pt") input_ids,attention_mask = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) model.eval() diverse_beam_outputs = model.generate( input_ids=input_ids,attention_mask=attention_mask, max_length=128, early_stopping=True, num_beams=5, num_beam_groups = 5, num_return_sequences=5, diversity_penalty = 0.70) sent = tokenizer.decode(diverse_beam_outputs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True) return sent output_text = gr.outputs.Textbox() gr.Interface(generate_text,"textbox", output_text).launch(inline=False)