Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,56 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer,
|
|
|
3 |
|
4 |
-
|
5 |
-
model =
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
|
5 |
+
# Load the model and processor
|
6 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
7 |
+
"Qwen/Qwen2-VL-72B-Instruct", torch_dtype="auto", device_map="auto"
|
8 |
+
)
|
9 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct")
|
10 |
|
11 |
+
# Define a function to process input and generate a response
|
12 |
+
def generate_response(image, text):
|
13 |
+
# Prepare the input
|
14 |
+
messages = [
|
15 |
+
{
|
16 |
+
"role": "user",
|
17 |
+
"content": [
|
18 |
+
{"type": "image", "image": image},
|
19 |
+
{"type": "text", "text": text},
|
20 |
+
],
|
21 |
+
}
|
22 |
+
]
|
23 |
+
|
24 |
+
# Process the input data
|
25 |
+
text_data = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
26 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
27 |
+
inputs = processor(
|
28 |
+
text=[text_data],
|
29 |
+
images=image_inputs,
|
30 |
+
videos=video_inputs,
|
31 |
+
padding=True,
|
32 |
+
return_tensors="pt",
|
33 |
+
)
|
34 |
|
35 |
+
# Generate the output
|
36 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
37 |
+
generated_ids_trimmed = [
|
38 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
39 |
+
]
|
40 |
+
output_text = processor.batch_decode(
|
41 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
42 |
+
)
|
43 |
+
|
44 |
+
return output_text[0]
|
45 |
+
|
46 |
+
# Create the Gradio interface
|
47 |
+
interface = gr.Interface(
|
48 |
+
fn=generate_response,
|
49 |
+
inputs=[gr.Image(type="pil", label="Input Image"), gr.Textbox(label="Input Text")],
|
50 |
+
outputs="text",
|
51 |
+
title="Qwen2-VL-72B-Instruct",
|
52 |
+
description="Generate AI responses based on image and text input using Qwen2-VL-72B-Instruct.",
|
53 |
+
)
|
54 |
+
|
55 |
+
# Launch the app
|
56 |
interface.launch()
|