Anime-Pack / app.py
shellypeng's picture
Update app.py
ca20cf0 verified
# -*- coding: utf-8 -*-
"""Test_gradio_push.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1mlZpAq-EWRmmLHH4Ok533awreqtJwzzW
"""
"""# HF Script
"""
# -*- coding: utf-8 -*-
"""Copy of Anime_Pack_Gradio.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR
"""
import os
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
import gradio as gr
import numpy as np
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, DPMSolverMultistepScheduler, StableDiffusionImg2ImgPipeline
import torch
from controlnet_aux import HEDdetector
from diffusers.utils import load_image
import concurrent.futures
from threading import Thread
from compel import Compel
from transformers import pipeline
model_ckpt = "papluca/xlm-roberta-base-language-detection"
pipe = pipeline("text-classification", model=model_ckpt)
HF_TOKEN = os.environ.get("HUGGING_FACE_HUB_TOKEN")
device="cuda" if torch.cuda.is_available() else "cpu"
pipe_scribble, pipe_depth, pipe_img2img = None, None, None
hidden_booster_text = "masterpiece++, best quality++, ultra-detailed+ +, unity 8k wallpaper+, illustration+, anime style+, intricate, fluid simulation, sharp edges. glossy++, Smooth++, detailed eyes++, best quality++,4k++,8k++,highres++,masterpiece++,ultra- detailed,realistic++,photorealistic++,photo-realistic++,depth of field, ultra-high definition, highly detailed, natural lighting, sharp focus, cinematic, hyperrealism,extremely detailed"
hidden_negative = "bad anatomy, disfigured, poorly drawn,deformed, mutation, malformation, deformed, mutated, disfigured, deformed eyes+, bad face++, bad hands, poorly drawn hands, malformed hands, extra arms++, extra legs++, Fused body+, Fused hands+, Fused legs+, missing arms, missing limb, extra digit+, fewer digits, floating limbs, disconnected limbs, inaccurate limb, bad fingers, missing fingers, ugly face, long body++"
hidden_cn_booster_text = ",漂亮的脸"
hidden_cn_negative = ""
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
controlnet_scribble = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False, )
depth_estimator = pipeline('depth-estimation')
controlnet_depth = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16
)
def translate(prompt):
trans_text = prompt
translated = model.generate(**tokenizer(trans_text, return_tensors="pt", padding=True))
tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
tgt_text = ''.join(tgt_text)[:-1]
return tgt_text
def load_pipe_scribble():
global pipe_scribble
if pipe_scribble is None:
pipe_scribble = StableDiffusionControlNetPipeline.from_single_file(
"https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_scribble, safety_checker=None, requires_safety_checker=False,
torch_dtype=torch.float16, token=HF_TOKEN
)
pipe_scribble.load_lora_weights("shellypeng/lora2")
pipe_scribble.fuse_lora(lora_scale=0.1)
pipe_scribble.load_textual_inversion("shellypeng/textinv1")
pipe_scribble.load_textual_inversion("shellypeng/textinv2")
pipe_scribble.load_textual_inversion("shellypeng/textinv3")
pipe_scribble.load_textual_inversion("shellypeng/textinv4")
pipe_scribble.scheduler = DPMSolverMultistepScheduler.from_config(pipe_scribble.scheduler.config, use_karras_sigmas=True)
pipe_scribble.safety_checker = None
pipe_scribble.requires_safety_checker = False
pipe_scribble.to(device)
pipe_scribble.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
def load_pipe_depth():
global pipe_depth
if pipe_depth is None:
pipe_depth = StableDiffusionControlNetPipeline.from_single_file(
"https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_depth,
torch_dtype=torch.float16,
)
pipe_depth.load_lora_weights("shellypeng/lora1")
pipe_depth.fuse_lora(lora_scale=0.3)
pipe_depth.load_textual_inversion("shellypeng/textinv1")
pipe_depth.load_textual_inversion("shellypeng/textinv2")
pipe_depth.load_textual_inversion("shellypeng/textinv3")
pipe_depth.load_textual_inversion("shellypeng/textinv4")
pipe_depth.scheduler = DPMSolverMultistepScheduler.from_config(pipe_depth.scheduler.config, use_karras_sigmas=True)
def dummy(images, **kwargs):
return images, False
pipe_depth.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
pipe_depth.to(device)
def load_pipe_img2img():
global pipe_img2img
if pipe_img2img is None:
pipe_img2img = StableDiffusionImg2ImgPipeline.from_single_file("https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors",
torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False, token=HF_TOKEN)
pipe_img2img.load_lora_weights("shellypeng/lora1")
pipe_img2img.fuse_lora(lora_scale=0.1)
pipe_img2img.load_lora_weights("shellypeng/lora2", token=HF_TOKEN)
pipe_img2img.fuse_lora(lora_scale=0.1)
pipe_img2img.load_textual_inversion("shellypeng/textinv1")
pipe_img2img.load_textual_inversion("shellypeng/textinv2")
pipe_img2img.load_textual_inversion("shellypeng/textinv3")
pipe_img2img.load_textual_inversion("shellypeng/textinv4")
pipe_img2img.scheduler = DPMSolverMultistepScheduler.from_config(pipe_img2img.scheduler.config, use_karras_sigmas=True)
pipe_img2img.safety_checker = None
pipe_img2img.requires_safety_checker = False
pipe_img2img.to(device)
pipe_img2img.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
def real_to_anime(text, input_img):
"""
pass the sd model and do scribble to image
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
expression to improve hand)
"""
load_pipe_depth()
input_img = Image.fromarray(input_img)
input_img = load_image(input_img)
input_img = depth_estimator(input_img)['depth']
res_image0 = pipe_depth(text, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
res_image1 = pipe_depth(text, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
res_image2 = pipe_depth(text, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
res_image3 = pipe_depth(text, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
return res_image0, res_image1, res_image2, res_image3
def scribble_to_image(text, neg_prompt_box, input_img):
"""
pass the sd model and do scribble to image
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
expression to improve hand)
"""
load_pipe_scribble()
# if auto detect detects chinese => auto turn on chinese prompting checkbox
# change param "bag" below to text, image param below to input_img
input_img = Image.fromarray(input_img)
input_img = hed(input_img, scribble=True)
input_img = load_image(input_img)
# global prompt
lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
if lang_check_label == 'zh' and lang_check_score >= 0.85:
text = translate(text)
compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
prompt = text + hidden_booster_text
prompt_embeds = compel_proc(prompt)
negative_prompt = neg_prompt_box + hidden_negative
negative_prompt_embeds = compel_proc(negative_prompt)
res_image0 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image1 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image2 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image3 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
return res_image0, res_image1, res_image2, res_image3
def real_img2img_to_anime(text, neg_prompt_box, input_img):
"""
pass the sd model and do scribble to image
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
expression to improve hand)
"""
load_pipe_img2img()
input_img = Image.fromarray(input_img)
input_img = load_image(input_img)
lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
if lang_check_label == 'zh' and lang_check_score >= 0.85:
text = translate(text)
compel_proc = Compel(tokenizer=pipe_img2img.tokenizer, text_encoder=pipe_img2img.text_encoder)
prompt = text + hidden_booster_text
prompt_embeds = compel_proc(prompt)
negative_prompt = neg_prompt_box + hidden_negative
negative_prompt_embeds = compel_proc(negative_prompt)
# input_img = depth_estimator(input_img)['depth']
res_image0 = pipe_img2img(image=input_img, strength=0.8, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image1 = pipe_img2img(image=input_img, strength=0.8, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image2 = pipe_img2img(image=input_img, strength=0.8, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image3 = pipe_img2img(image=input_img, strength=0.8, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
return res_image0, res_image1, res_image2, res_image3
theme = gr.themes.Soft(
primary_hue="orange",
secondary_hue="orange",
).set(
block_background_fill='*primary_50'
)
def zh_prompt_info(text, neg_text, chinese_check):
can_raise_info = ""
lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
neg_lang_check_label = pipe(neg_text, top_k=1, truncation=True)[0]['label']
neg_lang_check_score = pipe(neg_text, top_k=1, truncation=True)[0]['score']
print(lang_check_label)
if lang_check_label == 'zh' and lang_check_score >= 0.85:
if not chinese_check:
chinese_check = True
can_raise_info = "zh"
if neg_lang_check_label == 'en' and neg_lang_check_score >= 0.85:
can_raise_info = "invalid"
return True, can_raise_info
elif lang_check_label == 'en' and lang_check_score >= 0.85:
if chinese_check:
chinese_check = False
can_raise_info = "en"
if neg_lang_check_label == 'zh' and neg_lang_check_score >= 0.85:
can_raise_info = "invalid"
return False, can_raise_info
return chinese_check, can_raise_info
def mult_thread_img2img(prompt_box, neg_prompt_box, image_box):
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
future = executor.submit(real_img2img_to_anime, prompt_box, neg_prompt_box, image_box)
image1, image2, image3, image4 = future.result()
return image1, image2, image3, image4
def mult_thread_scribble(prompt_box, neg_prompt_box, image_box):
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
future = executor.submit(scribble_to_image, prompt_box, neg_prompt_box, image_box)
image1, image2, image3, image4 = future.result()
return image1, image2, image3, image4
def mult_thread_live_scribble(prompt_box, neg_prompt_box, image_box):
image_box = image_box["composite"]
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
future = executor.submit(scribble_to_image, prompt_box, neg_prompt_box, image_box)
image1, image2, image3, image4 = future.result()
return image1, image2, image3, image4
def mult_thread_lang_class(prompt_box, neg_prompt_box, chinese_check):
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
future = executor.submit(zh_prompt_info, prompt_box, neg_prompt_box, chinese_check)
chinese_check, can_raise_info = future.result()
if can_raise_info == "zh":
gr.Info("Chinese Language Detected, Switching to Chinese Prompt Mode")
elif can_raise_info == "en":
gr.Info("English Language Detected, Disabling Chinese Prompt Mode")
return chinese_check
with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Apps") as iface:
with gr.Tab("AnimeDepth(安妮深度)"):
gr.Markdown(
"""
# AnimeDepth(安妮深度)
Turns pictures into one in the anime style with depth-to-image controlnet.
将图片用深度图的方式转为动漫风图片。
"""
)
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row(equal_height=True):
with gr.Column(scale=4):
prompt_box = gr.Textbox(label="Prompt(提示词)", placeholder="Enter a prompt\n输入提示词", lines=3)
neg_prompt_box = gr.Textbox(label="Negative Prompt(负面提示词)", placeholder="Enter a negative prompt(things you don't want to include in the generated image)\n输入负面提示词:输入您不想生成的部分", lines=3)
with gr.Row(equal_height=True):
chinese_check = gr.Checkbox(label="Chinese Prompt Mode(中文提示词模式)", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)")
image_box = gr.Image(label="Input Image(上传图片)", height=400)
gen_btn = gr.Button(value="Generate(生成)")
with gr.Row(equal_height=True):
image1 = gr.Image(label="Result 1(结果图 1)")
image2 = gr.Image(label="Result 2(结果图 2)")
image3 = gr.Image(label="Result 3(结果图 3)")
image4 = gr.Image(label="Result 4(结果图 4)")
example_img2img = [
["漂亮的女孩,微笑,长发,黑发,粉色外套,白色内衬,优雅,红色背景,红色窗帘", "低画质", "sunmi.jpg"],
["Beautiful girl, smiling, bun, bun hair, black hair, beautiful eyes, black dress, elegant, red carpet photo","ugly, bad quality", "emma.jpg"]
]
# gr.Examples(examples=example_img2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4], fn=mult_thread_img2img, cache_examples=True)
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False)
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=real_to_anime, inputs=[prompt_box, image_box], outputs=[image1, image2, image3, image4])
with gr.Tab("Animefier(安妮漫风)"):
gr.Markdown(
"""
# Animefier(安妮漫风)
Turns realistic photos into one in the anime style.
将真实图片转为动漫风图片。
"""
)
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row(equal_height=True):
with gr.Column(scale=4):
prompt_box = gr.Textbox(label="Prompt(提示词)", placeholder="Enter a prompt\n输入提示词", lines=3)
neg_prompt_box = gr.Textbox(label="Negative Prompt(负面提示词)", placeholder="Enter a negative prompt(things you don't want to include in the generated image)\n输入负面提示词:输入您不想生成的部分", lines=3)
with gr.Row(equal_height=True):
chinese_check = gr.Checkbox(label="Chinese Prompt Mode(中文提示词模式)", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)")
image_box = gr.Image(label="Input Image(上传图片)", height=400)
gen_btn = gr.Button(value="Generate(生成)")
with gr.Row(equal_height=True):
image1 = gr.Image(label="Result 1(结果图 1)")
image2 = gr.Image(label="Result 2(结果图 2)")
image3 = gr.Image(label="Result 3(结果图 3)")
image4 = gr.Image(label="Result 4(结果图 4)")
example_img2img = [
["漂亮的女孩,微笑,长发,黑发,粉色外套,白色内衬,优雅,红色背景,红色窗帘", "低画质", "sunmi.jpg"],
["Beautiful girl, smiling, bun, bun hair, black hair, beautiful eyes, black dress, elegant, red carpet photo","ugly, bad quality", "emma.jpg"]
]
# gr.Examples(examples=example_img2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4], fn=mult_thread_img2img, cache_examples=True)
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False)
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_img2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4])
with gr.Tab("Live Sketch(实时涂鸦)"):
gr.Markdown(
"""
# Live Sketch(实时涂鸦)
Live draw sketches/scribbles and turns into one in the anime style.
实时涂鸦,将粗线条涂鸦转为动漫风图片。
"""
)
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row(equal_height=True):
with gr.Column(scale=4):
prompt_box = gr.Textbox(label="Prompt(提示词)", placeholder="Enter a prompt\n输入提示词", lines=3)
neg_prompt_box = gr.Textbox(label="Negative Prompt(负面提示词)", placeholder="Enter a negative prompt(things you don't want to include in the generated image)\n输入负面提示词:输入您不想生成的部分", lines=3)
with gr.Row(equal_height=True):
chinese_check = gr.Checkbox(label="Chinese Prompt Mode(中文提示词模式)", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)")
image_box = gr.ImageEditor(sources=(), brush=gr.Brush(default_size="5", color_mode="fixed", colors=["#000000"]), height=400)
gen_btn = gr.Button(value="Generate(生成)")
with gr.Row(equal_height=True):
image1 = gr.Image(label="Result 1(结果图 1)")
image2 = gr.Image(label="Result 2(结果图 2)")
image3 = gr.Image(label="Result 3(结果图 3)")
image4 = gr.Image(label="Result 4(结果图 4)")
# sketch_image_box.change(fn=mult_thread_scribble, inputs=[prompt_box, neg_prompt_box, sketch_image_box], outputs=[image1, image2, image3, image4])
example_scribble_live2img = [
["帅气的男孩,橙色头发++,皱眉,闭眼,深蓝色开襟毛衣,白色内衬,酷,冷漠,帅气,硝烟背景", "劣质", "sketch_boy.png"],
["a beautiful girl spreading her arms, blue hair, long hair, hat with flowers on its edge, smiling++, dynamic, black dress, park background, birds, trees, flowers, grass","ugly, worst quality", "girl_spread.jpg"]
]
# gr.Examples(examples=example_scribble_live2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4], fn=mult_thread_live_scribble, cache_examples=True)
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False)
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_live_scribble, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4])
with gr.Tab("AniSketch(安妮涂鸦)"):
gr.Markdown(
"""
# AniSketch(安妮涂鸦)
Turns sketches/scribbles into one in the anime style.
将草图、粗线条涂鸦转为动漫风图片。
"""
)
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row(equal_height=True):
with gr.Column(scale=4):
prompt_box = gr.Textbox(label="Prompt(提示词)", placeholder="Enter a prompt\n输入提示词", lines=3)
neg_prompt_box = gr.Textbox(label="Negative Prompt(负面提示词)", placeholder="Enter a negative prompt(things you don't want to include in the generated image)\n输入负面提示词:输入您不想生成的部分", lines=3)
with gr.Row(equal_height=True):
chinese_check = gr.Checkbox(label="Chinese Prompt Mode(中文提示词模式)", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)")
image_box = gr.Image(label="Input Image(上传图片)", height=400)
gen_btn = gr.Button(value="Generate(生成)")
with gr.Row(equal_height=True):
image1 = gr.Image(label="Result 1(结果图 1)")
image2 = gr.Image(label="Result 2(结果图 2)")
image3 = gr.Image(label="Result 3(结果图 3)")
image4 = gr.Image(label="Result 4(结果图 4)")
example_scribble2img = [
["漂亮的女人,散开的长发,巫师,巫师袍,微笑,拍手,优雅,成熟,月夜背景", "水印", "final_witch.jpg"],
["a man wearing a chinese clothes, closed eyes, handsome face, dragon on the clothes, expressionless face, indifferent, chinese building background","poor quality", "chinese_man.jpg"]
]
# gr.Examples(examples=example_scribble2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4], fn=mult_thread_scribble, cache_examples=True)
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False)
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_scribble, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4])
def run():
iface.queue(default_concurrency_limit=20).launch(debug=True, share=True)
run()
"""# Separator
"""