File size: 30,604 Bytes
c2ad8fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b295c80
 
c2ad8fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
import gradio as gr
from time import time

from bertviz import model_view, head_view
from bertviz_gradio import head_view_mod

import faiss
import torch
import os
# import nltk
import argparse
import random
import numpy as np
import pandas as pd

from argparse import Namespace
from tqdm.notebook import tqdm
from torch.utils.data import DataLoader
from functools import partial

from transformers import AutoTokenizer, MarianTokenizer, AutoModel, AutoModelForSeq2SeqLM, MarianMTModel

model_es = "Helsinki-NLP/opus-mt-en-es"
model_fr = "Helsinki-NLP/opus-mt-en-fr"
model_zh = "Helsinki-NLP/opus-mt-en-zh"
model_sw = "Helsinki-NLP/opus-mt-en-sw"

tokenizer_es = AutoTokenizer.from_pretrained(model_es)
tokenizer_fr = AutoTokenizer.from_pretrained(model_fr)
tokenizer_zh = AutoTokenizer.from_pretrained(model_zh)
tokenizer_sw = AutoTokenizer.from_pretrained(model_sw)

model_tr_es = MarianMTModel.from_pretrained(model_es)
model_tr_fr = MarianMTModel.from_pretrained(model_fr)
model_tr_zh = MarianMTModel.from_pretrained(model_zh)
model_tr_sw = MarianMTModel.from_pretrained(model_sw)

from faiss import write_index, read_index
import pickle 

def load_index(model): 
	with open('index/'+ model + '_metadata_ref.pkl', 'rb') as f:
		loaded_dict = pickle.load(f)
	for type in ['tokens','words']:
		for kind in ['input', 'output']: 
			## save index file
			name = 'index/'+ model + "_" + kind + "_"+ type + ".index" 
			loaded_dict[kind][type][1] = read_index(name)
			# write_index(metadata_all[kind][type][1], name)
	return loaded_dict


dict_models = {
	'en-es': model_es,
	'en-fr': model_fr,
	'en-zh': model_zh,
	'en-sw': model_sw,
}

dict_models_tr = {
	'en-es': model_tr_es,
	'en-fr': model_tr_fr,
	'en-zh': model_tr_zh,
	'en-sw': model_tr_sw,
}

dict_tokenizer_tr = {
	'en-es': tokenizer_es,
	'en-fr': tokenizer_fr,
	'en-zh': tokenizer_zh,
	'en-sw': tokenizer_sw,
}

dict_reference_faiss = {
	'en-es': load_index('en-es'),
}

print("dict", dict_reference_faiss['en-es']['input']['tokens'][1])

saliency_examples = [
	"Peace of Mind: Protection for consumers.",
	"The sustainable development goals report: towards a rescue plan for people and planet",
	"We will leave no stone unturned to hold those responsible to account.",
	"The clock is now ticking on our work to finalise the remaining key legislative proposals presented by this Commission to ensure that citizens and businesses can reap the benefits of our policy actions.",
	"Pumpkins, squash and gourds, fresh or chilled, excluding courgettes",
	"The labour market participation of mothers with infants has even deteriorated over the past two decades, often impacting their career and incomes for years.",
]

contrastive_examples = [
["Peace of Mind: Protection for consumers.",
"Paz mental: protección de los consumidores",
"Paz de la mente: protección de los consumidores"],
["the slaughterer has finished his work.",
"l'abatteur a terminé son travail.",
"l'abatteuse a terminé son travail."],
['A fundamental shift is needed - in commitment, solidarity, financing and action - to put the world on a better path.',
 '需要在承诺、团结、筹资和行动方面进行根本转变,使世界走上更美好的道路。',
 '我们需要从根本上转变承诺、团结、资助和行动,使世界走上更美好的道路。',]
	]



#Load challenge set examples
df_challenge_set = pd.read_csv("challenge_sets.csv")
arr_challenge_set = df_challenge_set.values
arr_challenge_set = [[x[2], x[3], x[4], x[5]] for x in arr_challenge_set]




def get_k_prob_tokens(transition_scores, result, model, k_values=5):
	tokenizer_tr = dict_tokenizer_tr[model]
	gen_sequences = result.sequences[:, 1:]

	result_output = []

	# First beam only... 
	bs = 0
	text = ' '
	for tok, score, i_step in zip(gen_sequences[bs], transition_scores[bs],range(len(gen_sequences[bs]))):

		beam_i = result.beam_indices[0][i_step]
		if beam_i < 0:
			beam_i = bs
		bs_alt = [tokenizer_tr.decode(tok) for tok in result.scores[i_step][beam_i].topk(k_values).indices ]
		bs_alt_scores = np.exp(result.scores[i_step][beam_i].topk(k_values).values)
		result_output.append([np.array(result.scores[i_step][beam_i].topk(k_values).indices), np.array(bs_alt_scores),bs_alt])

	return result_output


def split_token_from_sequences(sequences, model) -> dict :
	n_sentences = len(sequences)

	gen_sequences_texts = []
	for bs in range(n_sentences): 
		# gen_sequences_texts.append(dict_tokenizer_tr[model].decode(sequences[:, 1:][bs],  skip_special_tokens=True).split(' '))
		#### decoder per token.
		seq_bs = []
		
		for token in sequences[:, 1:][bs]:
			seq_bs.append(dict_tokenizer_tr[model].decode(token,  skip_special_tokens=True))
		gen_sequences_texts.append(seq_bs)

	score = 0
	#raw dict is bos
	text = 'bos'
	new_id = text +'--1'
	dict_parent = [{'id': new_id, 'parentId': None , 'text': text, 'name': 'bos', 'prob': score }]
	id_dict_pos = {}
	step_i = 0
	cont = True
	words_by_step = [] #[['bos' for i in range(n_sentences)]]

	while cont: 
		# append to dict_parent for all beams of step_i
		cont = False
		step_words = []
		for beam in range(n_sentences):
			app_text = '<empty_word>'
			if step_i < len(gen_sequences_texts[beam]): 
				app_text = gen_sequences_texts[beam][step_i]
				cont = True
			step_words.append(app_text)
		words_by_step.append(step_words)
		print(words_by_step)

		for i_bs, step_w in enumerate(step_words):
			if not step_w in ['<empty_word>', '<pad>']:
				#new id if the same word is not in another beam (?) [beam[i] was a token id]
				#parent id = previous word and previous step.

				
				# new_parent_id = "-".join([str(beam[i]) for i in range(step_i)])
				
				new_id = "-".join([str(words_by_step[i][i_bs])+ '-' + str(i) for i in range(step_i+1)])
				parent_id = "-".join([words_by_step[i][i_bs] + '-' + str(i) for i in range(step_i) ])
				
				# new_id = step_w +'-' + str(step_i)
				# parent_id = words_by_step[step_i-1][i_bs] + '-' + str(step_i -1)
				next_word_flag = 1
				if step_i == 0 : 
					parent_id =  'bos--1'
				## if the dict already exists remove it, if it is not a root... 
				## root?? then next is ''
				else:
					next_word_flag = len(gen_sequences_texts[i_bs][step_i]) > step_i ## Not in step_i = 0;
				if next_word_flag:
					if not (new_id in id_dict_pos):
						dict_parent.append({'id': new_id, 'parentId': parent_id , 'text': step_w, 'name': step_w, 'prob' : score })
						id_dict_pos[new_id] = len(dict_parent) - 1
				else: 
					if not (new_id in id_dict_pos):
						dict_parent.append({'id': new_id, 'parentId': parent_id , 'text': step_w, 'name': step_w, 'prob' : score  })
						id_dict_pos[new_id] = len(dict_parent) - 1


		step_i += 1
	return dict_parent


## Tokenization 
def compute_tokenization(inputs, targets, w1, model): 
	colors = ['tok-first-color', 'tok-second-color', 'tok-third-color', 'tok-fourth-color']
	len_colors = len(colors);
	inputs = inputs.input_ids
	html_tokens = ""
	i = 0 
	for sentence in inputs: 
		html_tokens += "<p>"
		# print("TOKENS", inputs, targets)
		# print("input", [dict_tokenizer_tr[model].decode(tok) for tok in sentence])
		tokens = [dict_tokenizer_tr[model].decode(tok) for tok in sentence]
		for token in tokens:
			token = token.replace("<", "<'") # .substring(0, token.length - 2) 
			html_tokens += "<span class='" + colors[i % len_colors] + "'>" + token + " </span>"
			i +=1
	html_tokens += "</p>"
	i = 0 
	# for tgt_sentence in targets : 
	html_tokens_tgt = ""
	html_tokens_tgt += "<p>"
	# print("targets", [dict_tokenizer_tr[model].decode(tok) for tok in targets])
	# print("targets", dict_tokenizer_tr[model].decode(targets))
	tokens = [dict_tokenizer_tr[model].decode(tok) for tok in targets]
	for token in tokens:
		token = token.replace("<", "<'") # .substring(0, token.length - 2) 
		html_tokens_tgt += "<span class='" + colors[i % len_colors] + "'>" + token + " </span>"
		i +=1
	html_tokens_tgt += "</p>"
	# print("HTML", html_tokens, html_tokens_tgt)
	return html_tokens, html_tokens_tgt


def create_vocab_multiple(embeddings_list, model): 
	"""_summary_

	Args:
		embeddings_list (list): embedding array 

	Returns:
		Dict: vocabulary of tokens' embeddings
	"""
	print("START VOCAB CREATION MULTIPLE \n \n ")
	vocab = {} ## add embedds. 
	sentence_tokens_text_list = []
	for embeddings in embeddings_list: 
		tokens_id = embeddings['tokens'] # [[tokens_id]x n_sentences ]
		for sent_i, sentence in enumerate(tokens_id):
			sentence_tokens = []
			for tok_i, token in enumerate(sentence): 
				sentence_tokens.append(token)
				if not (token in vocab):
					vocab[token] = {
						'token' : token,
						'count': 1, 
						# 'text': embeddings['texts'][sent_i][tok_i],
						'text': dict_tokenizer_tr[model].decode([token]),
						# 'text': src_token_lists[sent_i][tok_i], 
						'embed': embeddings['embeddings'][sent_i][tok_i]}
				else: 
					vocab[token]['count'] = vocab[token]['count'] + 1  
		# print(vocab)
			sentence_tokens_text_list.append(sentence_tokens)
	print("END VOCAB CREATION MULTIPLE \n \n ")
	return vocab, sentence_tokens_text_list

def vocab_words_all_prefix(token_embeddings, model, sufix="@@",prefix = '▁' ):
	vocab = {} 
	# inf_model = dict_models_tr[model]
	sentence_words_text_list = []
	if prefix : 
		n_prefix = len(prefix)
		for input_sentences in token_embeddings: 
			# n_tokens_in_word 
			for sent_i, sentence in enumerate(input_sentences['tokens']):
				words_text_list = []
				# embedding = input_sentences['embed'][sent_i]
				word = '' 
				tokens_ids = []
				embeddings = []
				ids_to_tokens = dict_tokenizer_tr[model].convert_ids_to_tokens(sentence)
				# print("validate same len", len(sentence) == len(ids_to_tokens), len(sentence), len(ids_to_tokens), ids_to_tokens)

				to_save= False
				for tok_i, token_text in enumerate(ids_to_tokens): 
					token_id = sentence[tok_i]
					if token_text[:n_prefix] == prefix : 
						#first we save the previous word 
						if to_save: 
							vocab[word] = {
									'word' : word,
									'text': word,
									'count': 1, 
									'tokens_ids' : tokens_ids, 
									'embed': np.mean(np.array(embeddings), 0).tolist()
								}
							words_text_list.append(word)
						#word is starting if prefix
						tokens_ids = [token_id]
						embeddings = [input_sentences['embeddings'][sent_i][tok_i]]
						word = token_text[n_prefix:]
						## if word 
						to_save = True 
						
					else : 
						if (token_text in dict_tokenizer_tr[model].special_tokens_map.values()):
							# print('final or save', token_text, token_id, to_save, word)
							if to_save: 
								# vocab[word] = ids
								vocab[word] = {
									'word' : word,
									'text': word,
									'count': 1, 
									'tokens_ids' : tokens_ids, 
									'embed': np.mean(np.array(embeddings), 0).tolist()
								}
								words_text_list.append(word)
							#special token is one token element, no continuation 
							# vocab[token_text] = [token_id]
							tokens_ids = [token_id]
							embeddings = [input_sentences['embeddings'][sent_i][tok_i]]
							vocab[token_text] = {
									'word' : token_text,
									'count': 1, 
									'text': word,
									'tokens_ids' : tokens_ids, 
									'embed': np.mean(np.array(embeddings), 0).tolist()
								}
							words_text_list.append(token_text)
							to_save = False
						else: 
							# is a continuation; we do not know if it is final; we don't save here.
							to_save = True 
							word += token_text 
							tokens_ids.append(token_id)
							embeddings.append(input_sentences['embeddings'][sent_i][tok_i])
				if to_save: 
					# print('final save', token_text, token_id, to_save, word)
					vocab[word] = tokens_ids
					if not (word in vocab):
						vocab[word] = {
							'word' : word,
							'count': 1, 
							'text': word,
							'tokens_ids' : tokens_ids, 
							'embed': np.mean(np.array(embeddings), 0).tolist()
							}
						words_text_list.append(word)
					else: 
						vocab[word]['count'] = vocab[word]['count'] + 1 
				sentence_words_text_list.append(words_text_list)

	return vocab, sentence_words_text_list
def search_query_vocab(index, vocab_queries,  topk = 10, limited_search = []):
	""" the embed queries are a vocabulary of words : embds_input_voc

	Args:
		index (_type_): faiss index
		embed_queries (_type_): vocab format.
			{   'token' : token,
				'count': 1, 
				'text': src_token_lists[sent_i][tok_i], 
				'embed': embeddings[0]['embeddings'][sent_i][tok_i] }
		nb_ids (_type_): hash to find the token_id w.r.t the faiss index id. 
		topk (int, optional): nb of similar tokens. Defaults to 10.

	Returns:
		_type_: Distance matrix D, indices matrix I and tokens ids (using nb_ids)
	"""
	# nb_qi_ids = [] ##ordered ids list
	nb_q_embds = [] ##ordered embeddings list
	metadata = {}
	qi_pos = 0
	for key , token_values in vocab_queries.items():
		# nb_qi_ids.append(token_values['token']) # for x in vocab_tokens]
		metadata[qi_pos] = {'word': token_values['word'], 'tokens': token_values['tokens_ids'], 'text': token_values['text']}
		qi_pos += 1
		nb_q_embds.append(token_values['embed']) # for x in vocab_tokens]
	
	xq = np.array(nb_q_embds).astype('float32') #elements to query

	D,I = index.search(xq, topk)

	return D,I, metadata

def search_query_vocab_token(index, vocab_queries,  topk = 10, limited_search = []):
	""" the embed queries are a vocabulary of words : embds_input_vov
	Returns:
		_type_: Distance matrix D, indices matrix I and tokens ids (using nb_ids)
	"""
	# nb_qi_ids = [] ##ordered ids list
	nb_q_embds = [] ##ordered embeddings list
	metadata = {}
	qi_pos = 0
	for key , token_values in vocab_queries.items():
		# nb_qi_ids.append(token_values['token']) # for x in vocab_tokens]
		metadata[qi_pos] = {'token': token_values['token'], 'text': token_values['text']}
		qi_pos += 1
		nb_q_embds.append(token_values['embed']) # for x in vocab_tokens]
	
	xq = np.array(nb_q_embds).astype('float32') #elements to query

	D,I = index.search(xq, topk)

	return D,I, metadata	


def build_search(query_embeddings, model,type="input"):
	metadata_all = dict_reference_faiss[model]

	# ## biuld vocab for index 
	vocab_queries, sentence_tokens_list = create_vocab_multiple(query_embeddings, model)
	words_vocab_queries, sentence_words_list = vocab_words_all_prefix(query_embeddings, model, sufix="@@",prefix="▁")
	
	index_vor_tokens = metadata_all[type]['tokens'][1]
	md_tokens = metadata_all[type]['tokens'][2]
	D, I, meta = search_query_vocab_token(index_vor_tokens, vocab_queries)

	qi_pos = 0 
	similar_tokens = {}
	# similar_tokens = []
	for dist, ind in zip(D,I):
		try: 
			# similar_tokens.append({
			similar_tokens[str(meta[qi_pos]['token'])] = {
				'token': meta[qi_pos]['token'], 
				'text': meta[qi_pos]['text'], 
				# 'text': dict_tokenizer_tr[model].decode(meta[qi_pos]['token'])
				# 'text': meta[qi_pos]['text'], 
				"similar_topk": [md_tokens[i_index]['token'] for i_index in ind if (i_index != -1) ], 
				"distance": [dist[i] for (i, i_index) in enumerate(ind) if (i_index != -1)], 
				}
			# )
		except: 
			print("\n ERROR ", qi_pos, dist, ind)
		qi_pos += 1


	index_vor_words = metadata_all[type]['words'][1]
	md_words = metadata_all[type]['words'][2]

	Dw, Iw, metaw = search_query_vocab(index_vor_words, words_vocab_queries)
	# D, I, meta, vocab_words, sentence_words_list = result_input['words']# [2] # D ; I ; meta
	qi_pos = 0 
	# similar_words = []
	similar_words = {}
	for dist, ind in zip(Dw,Iw):
		try: 
			# similar_words.append({
			similar_words[str(metaw[qi_pos]['word']) ] = {
				'word': metaw[qi_pos]['word'], 
				'text': metaw[qi_pos]['word'], 
				"similar_topk": [md_words[i_index]['word'] for i_index in ind if (i_index != -1) ], 
				"distance": [dist[i] for (i, i_index) in enumerate(ind) if (i_index != -1)], 
				}
			# )
		except: 
			print("\n ERROR ", qi_pos, dist, ind)
		qi_pos += 1


	return {'tokens': {'D': D, 'I': I, 'meta': meta, 'vocab_queries': vocab_queries, 'similar':similar_tokens, 'sentence_key_list': sentence_tokens_list}, 
			'words': {'D':Dw,'I': Iw, 'meta': metaw, 'vocab_queries':words_vocab_queries, 'sentence_key_list': sentence_words_list, 'similar': similar_words}
			}
from sklearn.manifold import TSNE
def embds_input_projection_vocab(vocab, key="token"): 
	t0 = time()
	
	nb_ids = [] ##ordered ids list
	nb_embds = [] ##ordered embeddings list
	nb_text = [] ##ordered embeddings list
	tnse_error = []
	for _ , token_values in vocab.items():
		tnse_error.append([0,0])
		nb_ids.append(token_values[key]) # for x in vocab_tokens]
		nb_text.append(token_values['text']) # for x in vocab_tokens]
		nb_embds.append(token_values['embed']) # for x in vocab_tokens]

	X = np.array(nb_embds).astype('float32') #elements to project 
	try:
		tsne = TSNE(random_state=0, n_iter=1000)
		tsne_results = tsne.fit_transform(X)
	
		tsne_results = np.c_[tsne_results, nb_ids, nb_text, range(len(nb_ids))] ## creates a zip array : [[TNSE[X,Y], tokenid, token_text], ...]
	except: 
		tsne_results = np.c_[tnse_error, nb_ids, nb_text, range(len(nb_ids))] ## creates a zip array : [[TNSE[X,Y], tokenid, token_text], ...]

	t1 = time()
	print("t-SNE: %.2g sec" % (t1 - t0))
	# print(tsne_results)
	
	return tsne_results.tolist()



def filtered_projection(similar_key, vocab, model, type="input", key="word"): 
	metadata_all = dict_reference_faiss[model]
	vocab_proj = vocab.copy()
	## tnse projection Input words
	source_words_voc_similar = set()
	# for words_set in similar_key:
	for key_i in similar_key:
		words_set = similar_key[key_i]
		source_words_voc_similar.update(words_set['similar_topk'])

	# print(len(source_words_voc_similar))
	# source_embeddings_filtered = {key:  metadata_all['input']['words'][0][key] for key in source_words_voc_similar}
	source_embeddings_filtered = {key_value:  metadata_all[type][key][0][key_value] for key_value in source_words_voc_similar}
	vocab_proj.update(source_embeddings_filtered)
	## 	vocab_proj add 
	try:
		result_TSNE = embds_input_projection_vocab(vocab_proj, key=key[:-1]) ## singular => without 's'
		dict_projected_embds_all = {str(embds[2]): [embds[0], embds[1], embds[2], embds[3], embds[4]] for embds in result_TSNE}
	except: 
		print('TSNE error', type, key)
		dict_projected_embds_all = {}

	

	# print(result_TSNE)
	return dict_projected_embds_all 

def get_bertvis_data(input_text, lg_model):
	tokenizer_tr = dict_tokenizer_tr[lg_model]
	model_tr = dict_models_tr[lg_model]

	# input_ids = tokenizer_tr(input_text, return_tensors="pt", padding=True)
	input_ids = tokenizer_tr(input_text, return_tensors="pt", padding=False)
	result_att = model_tr.generate(**input_ids,
		num_beams=4,
        num_return_sequences=4,
		return_dict_in_generate=True,
		output_attentions =True,
		output_scores=True,
	)

	# tokenizer_tr.convert_ids_to_tokens(result_att.sequences[0])
	# tokenizer_tr.convert_ids_to_tokens(input_ids.input_ids[0])

	tgt_text = tokenizer_tr.decode(result_att.sequences[0], skip_special_tokens=True)


	outputs = model_tr(input_ids=input_ids.input_ids,
					decoder_input_ids=result_att.sequences[:1],
					output_attentions =True,
					)
	html_attentions = head_view_mod(
		encoder_attention = outputs.encoder_attentions,
		cross_attention = outputs.cross_attentions,
		decoder_attention = outputs.decoder_attentions,
		encoder_tokens = tokenizer_tr.convert_ids_to_tokens(input_ids.input_ids[0]),
		decoder_tokens = tokenizer_tr.convert_ids_to_tokens(result_att.sequences[0]),
		html_action='gradio'
		)
	return html_attentions, tgt_text, result_att, outputs


def translation_model(w1, model):
  #translate and get internal values and visualizations; 
  # src_text = saliency_examples[0]
  inputs = dict_tokenizer_tr[model](w1, return_tensors="pt", padding=True)

  num_ret_seq = 4
  translated  = dict_models_tr[model].generate(**inputs, 
                  num_beams=4,
                  num_return_sequences=num_ret_seq,
                  return_dict_in_generate=True, 
                  output_attentions =True,  
                  output_hidden_states = True, 
                  output_scores=True,)


  beam_dict = split_token_from_sequences(translated.sequences,model )

  tgt_text = dict_tokenizer_tr[model].decode(translated.sequences[0], skip_special_tokens=True)
  ## Attentions
  outputs = dict_models_tr[model](input_ids=inputs.input_ids,
    decoder_input_ids=translated.sequences[:1],
    output_attentions =True,
  )
  encoder_tokens = dict_tokenizer_tr[model].convert_ids_to_tokens(inputs.input_ids[0])
  decoder_tokens = dict_tokenizer_tr[model].convert_ids_to_tokens(translated.sequences[0]) 
#   decoder_tokens = [tok for tok in decoder_tokens if tok != '<pad>']
#   decoder_tokens = [tok for tok in decoder_tokens if tok != '<pad>']

  # html_attentions = head_view_mod(
	# 	encoder_attention = outputs.encoder_attentions,
	# 	cross_attention = outputs.cross_attentions,
	# 	decoder_attention = outputs.decoder_attentions,
	# 	encoder_tokens = encoder_tokens,
	# 	decoder_tokens = decoder_tokens,
	# 	html_action='gradio'
	# 	)
  
  html_attentions_enc = head_view_mod(
		encoder_attention = outputs.encoder_attentions,
		encoder_tokens = encoder_tokens,
		decoder_tokens = decoder_tokens,
		html_action='gradio'
		)
  
  html_attentions_dec = head_view_mod(
		# encoder_attention = outputs.encoder_attentions,
    decoder_attention = outputs.decoder_attentions,
		encoder_tokens = encoder_tokens,
		decoder_tokens = decoder_tokens,
		html_action='gradio'
		)
  
  html_attentions_cross = head_view_mod(
    cross_attention = outputs.cross_attentions,
    encoder_tokens = encoder_tokens,
    decoder_tokens = decoder_tokens,
    html_action='gradio'
    )

  # tokenization 
  html_in, html_out = compute_tokenization(inputs, translated.sequences[0],w1, model)

  transition_scores = dict_models_tr[model].compute_transition_scores(
	translated.sequences, translated.scores, translated.beam_indices  , normalize_logits=True
	)
  prob_tokens = get_k_prob_tokens(transition_scores, translated, model, k_values=10)

  input_embeddings = dict_models_tr[model].get_encoder().embed_tokens(inputs.input_ids)
  target_embeddings = dict_models_tr[model].get_decoder().embed_tokens(translated.sequences)


  return [tgt_text,
          [beam_dict,prob_tokens, html_in, html_out, translated, inputs.input_ids,input_embeddings,target_embeddings],
          [html_attentions_enc['params'], html_attentions_enc['html2'].data], 
          [html_attentions_dec['params'], html_attentions_dec['html2'].data], 
          [html_attentions_cross['params'], html_attentions_cross['html2'].data] ]



html = """
<html>
<script async src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js"></script>

  <style>
  .tok-first-color {
    background: #e0ffcd;
  }

  .tok-second-color {
    background: #fdffcd;
  }

  .tok-third-color {
    background: #ffebbb;
  }

  .tok-fourth-color {
    background: #ffcab0;
  }
</style>    
  <body>
  
    <p id="demo"></p>
    <p id="viz"></p>

    <p id="demo2"></p>
    <h4> Exploring top-k probable tokens </h4>
    <div id="d3_text_grid">... top 10 tokens generated at each step ...</div>

    <h4> Exploring the Beam Search sequence generation</h4>
    <div id="d3_beam_search">... top 4 generated sequences using Beam Search...</div>

  </body>
</html>
"""

html_tok = """
 <div id="d3_tok">... tokenization visualization ...</div> 
 """

html_embd = """
 <div id="d3_embd">... token embeddings visualization ...</div>
	<div id="select_div">
    	<select id="select_type" class="form-select" aria-label="select example" hidden>
      	<option selected value="words">Words</option>
      	<option value="tokens">Tokens</option>
    	</select>
  	</div>
	  <div class="row">
		<div class="col-9"> 
		<div id="d3_graph_input_words" class="d3_graph words"></div>
		</div>
		<div class="col-3">
		<div id="similar_input_words" class=""></div>
		</div>
		</div>
	<div id="d3_graph_input_tokens" class="d3_graph tokens"></div>
	<div id="similar_input_tokens" class=" "></div>

 """

html_tok_target ="""
 <div id="d3_tok_target">... tokenization visualization ...</div> 
 """

html_embd_target= """
 <div id="d3_embd_target">... token embeddings visualization ...</div> 
 <div id="d3_graph_output_words" class="d3_graph words"></div>
	<div id="d3_graph_output_tokens" class="d3_graph tokens"></div>
  <div id="similar_output_words" class=""></div>
  <div id="similar_output_tokens" class=" "></div>
 """

html_att_enc =  """
 <div id="d3_att_enc">... Encoder self attention only -- last layer and mean across heads ... Always read from left to right</div> 
 <div id="bertviz_enc"></div>
 """

html_att_cross =  """
 <div id="d3_att_cross">... Encoder-decoder cross attention only -- last layer and mean across heads ...</div> 
 """

html_att_dec =  """
 <div id="d3_att_dec">... decoder self attention only -- last layer and mean across heads ...</div> 
 """



def sentence_maker2(w1,j2):
   print(w1,j2)
   return "in sentence22..."


def first_function(w1, model):
	global metadata_all
	#translate and get internal values
	sentences = w1.split("\n")
	all_sentences = []
	translated_text = ''
	input_embeddings = []
	output_embeddings = []
	for sentence in sentences :
		# print(sentence, end=";") 
		params = translation_model(sentence, model)
		all_sentences.append(params)
		# print(len(params))
		translated_text +=  params[0] + ' \n'
		input_embeddings.append({	
			'embeddings': params[1][6].detach(), ## create a vocabulary with the set of embeddings 
			'tokens': params[1][3+2].tolist(), # one translation = one sentence
			# 'texts' : 	dict_tokenizer_tr[model].decode(params[2].tolist())

		}) 
		output_embeddings.append({
			'embeddings' : params[1][7].detach(),
			'tokens': params[1][3+1].sequences.tolist(),
			# 'texts' : 	dict_tokenizer_tr[model].decode(params[1].sequences.tolist())
		})
	
	## load_reference; 
	## Build FAISS index 
	# ---> preload faiss using the respective model with a initial dataset. 
	## dict_reference_faiss[model] = metadata_all [per language]
	# result_input = build_reference(input_embeddings,model)
	# result_output = build_reference(output_embeddings,model)
	# metadata_all = {'input': result_input, 'output': result_output}

	## Build FAISS index 
	# ---> preload faiss using the respective model with a initial dataset. 
	result_search = {}
	result_search['input'] = build_search(input_embeddings, model, type='input')
	result_search['output'] = build_search(output_embeddings, model, type='output')

	json_out = {'input': {'tokens': {}, 'words': {}}, 'output': {'tokens': {}, 'words': {}}}
	dict_projected = {}
	for type in ['input', 'output']:
		dict_projected[type] = {} 
		for key in ['tokens', 'words']: 
			similar_key = result_search[type][key]['similar']
			vocab = result_search[type][key]['vocab_queries']
			dict_projected[type][key] =  filtered_projection(similar_key, vocab, model, type=type, key=key)
			json_out[type][key]['similar_queries'] = similar_key
			json_out[type][key]['tnse'] = dict_projected[type][key]
			json_out[type][key]['key_text_list'] = result_search[type][key]['sentence_key_list']

	## bertviz
	# paramsbv, tgtbv = get_bertvis_data(w1, model)
	
	# params.append(json_out)
	html_att_enc = params[2][1]#.root_div_id = "bertviz_enc"
	html_att_dec = params[3][1]
	html_att_cross = params[4][1]
	

	params = [params[0], params[1], json_out, params[2][0], params[3][0], params[4][0]]
	# params.append([tgt, params['params'], params['html2'].data]

	return [translated_text, params, html_att_enc, html_att_dec, html_att_cross]

def second_function(w1,j2):
	#  json_value = {'one':1}#  return f"{w1['two']} in sentence22..."
	# to transfer the data to json.
	print("second_function -- after the js", w1,j2)
	return "transition to second js function finished."


with gr.Blocks(js="plotsjs.js") as demo:
	gr.Markdown(
	"""
	# MAKE NMT Workshop \t `Literacy task` 
	""")

	gr.Markdown(
		"""
		### Translation 
		""")
	
	gr.Markdown(
		"""
		1. Select the language pair for the translation 
		""")
	radio_c = gr.Radio(choices=['en-zh', 'en-es', 'en-fr', 'en-sw'], value="en-es", label= '', container=False)
	gr.Markdown(
		"""
		2. Source text to translate
		""")
	in_text = gr.Textbox(label="source text")
	with gr.Accordion("Optional: Challenge selection:", open=False):	
		gr.Markdown(
			"""
			### select an example from the challenge set listed bellow
			""")
		challenge_ex  = gr.Textbox(label="Challenge", interactive=False)
		category_minor  = gr.Textbox(label="category_minor", interactive=False)
		category_major  = gr.Textbox(label="category_major", interactive=False)
		
		with gr.Accordion("Examples:"):
			gr.Examples(arr_challenge_set,[in_text, challenge_ex,category_minor,category_major], label="")

	btn = gr.Button("Translate")
	
	
	with gr.Accordion("3. Review the source tokenization:", open=False):
		input_tokenisation = gr.HTML(html_tok)

	with gr.Accordion("4. Review similar source tokens in the embedding space:", open=False):
		input_embd= gr.HTML(html_embd)

	with gr.Accordion("5. Review the attention between the source tokens:", open=False):
		gr.Markdown(
			"""
			`Bertviz ` 
			""")
		input_embd= gr.HTML(html_att_enc)
		enc_html = gr.HTML()

	gr.Markdown(
		"""
		### Text is translated into Target Language 
		""")
	out_text  = gr.Textbox(label="target text")

	with gr.Accordion("1. Review the target tokenization:", open=False):
		target_tokenisation = gr.HTML(html_tok_target)

	with gr.Accordion("2. Review similar target tokens in the embedding space:", open=False):
		target_embd= gr.HTML(html_embd_target)

	with gr.Accordion("3. Review the attention between the target and source tokens:", open=False):
		gr.Markdown(
			"""
			`Bertviz -cross attention` 
			""")
		input_embd= gr.HTML(html_att_cross)
		cross_html = gr.HTML()

	with gr.Accordion("4. Review the attention between the target tokens:", open=False):
		gr.Markdown(
			"""
			`Bertviz -dec attention` 
			""")
		input_embd= gr.HTML(html_att_dec)
		dec_html = gr.HTML()

	with gr.Accordion("6. Review the alternative translations tokens:", open=False):
		gr.Markdown(
			"""
			Generation process : `topk - beam search ` 
			""")
		input_mic = gr.HTML(html)


	out_text2  = gr.Textbox(visible=False)
	var2 = gr.JSON(visible=False)
		

	btn.click(first_function, [in_text, radio_c], [out_text,var2,enc_html, dec_html, cross_html], js="(in_text,radio_c) => testFn_out(in_text,radio_c)") #should return an output comp.
	out_text.change(second_function, [out_text, var2], out_text2, js="(out_text,var2) => testFn_out_json(var2)") #

	# run script function on load,
	# demo.load(None,None,None,js="plotsjs.js")

if __name__ == "__main__":   
    demo.launch()