Spaces:
Sleeping
Sleeping
import gradio as gr | |
from time import time | |
from bertviz import model_view, head_view | |
from bertviz_gradio import head_view_mod | |
import faiss | |
import torch | |
import os | |
# import nltk | |
import argparse | |
import random | |
import numpy as np | |
import pandas as pd | |
from argparse import Namespace | |
from tqdm.notebook import tqdm | |
from torch.utils.data import DataLoader | |
from functools import partial | |
from transformers import AutoTokenizer, MarianTokenizer, AutoModel, AutoModelForSeq2SeqLM, MarianMTModel | |
model_es = "Helsinki-NLP/opus-mt-en-es" | |
model_fr = "Helsinki-NLP/opus-mt-en-fr" | |
model_zh = "Helsinki-NLP/opus-mt-en-zh" | |
model_sw = "Helsinki-NLP/opus-mt-en-sw" | |
tokenizer_es = AutoTokenizer.from_pretrained(model_es) | |
tokenizer_fr = AutoTokenizer.from_pretrained(model_fr) | |
tokenizer_zh = AutoTokenizer.from_pretrained(model_zh) | |
tokenizer_sw = AutoTokenizer.from_pretrained(model_sw) | |
model_tr_es = MarianMTModel.from_pretrained(model_es) | |
model_tr_fr = MarianMTModel.from_pretrained(model_fr) | |
model_tr_zh = MarianMTModel.from_pretrained(model_zh) | |
model_tr_sw = MarianMTModel.from_pretrained(model_sw) | |
from faiss import write_index, read_index | |
import pickle | |
def load_index(model): | |
with open('index/'+ model + '_metadata_ref.pkl', 'rb') as f: | |
loaded_dict = pickle.load(f) | |
for type in ['tokens','words']: | |
for kind in ['input', 'output']: | |
## save index file | |
name = 'index/'+ model + "_" + kind + "_"+ type + ".index" | |
loaded_dict[kind][type][1] = read_index(name) | |
# write_index(metadata_all[kind][type][1], name) | |
return loaded_dict | |
dict_models = { | |
'en-es': model_es, | |
'en-fr': model_fr, | |
'en-zh': model_zh, | |
'en-sw': model_sw, | |
} | |
dict_models_tr = { | |
'en-es': model_tr_es, | |
'en-fr': model_tr_fr, | |
'en-zh': model_tr_zh, | |
'en-sw': model_tr_sw, | |
} | |
dict_tokenizer_tr = { | |
'en-es': tokenizer_es, | |
'en-fr': tokenizer_fr, | |
'en-zh': tokenizer_zh, | |
'en-sw': tokenizer_sw, | |
} | |
dict_reference_faiss = { | |
'en-es': load_index('en-es'), | |
} | |
print("dict", dict_reference_faiss['en-es']['input']['tokens'][1]) | |
saliency_examples = [ | |
"Peace of Mind: Protection for consumers.", | |
"The sustainable development goals report: towards a rescue plan for people and planet", | |
"We will leave no stone unturned to hold those responsible to account.", | |
"The clock is now ticking on our work to finalise the remaining key legislative proposals presented by this Commission to ensure that citizens and businesses can reap the benefits of our policy actions.", | |
"Pumpkins, squash and gourds, fresh or chilled, excluding courgettes", | |
"The labour market participation of mothers with infants has even deteriorated over the past two decades, often impacting their career and incomes for years.", | |
] | |
contrastive_examples = [ | |
["Peace of Mind: Protection for consumers.", | |
"Paz mental: protección de los consumidores", | |
"Paz de la mente: protección de los consumidores"], | |
["the slaughterer has finished his work.", | |
"l'abatteur a terminé son travail.", | |
"l'abatteuse a terminé son travail."], | |
['A fundamental shift is needed - in commitment, solidarity, financing and action - to put the world on a better path.', | |
'需要在承诺、团结、筹资和行动方面进行根本转变,使世界走上更美好的道路。', | |
'我们需要从根本上转变承诺、团结、资助和行动,使世界走上更美好的道路。',] | |
] | |
#Load challenge set examples | |
df_challenge_set = pd.read_csv("challenge_sets.csv") | |
arr_challenge_set = df_challenge_set.values | |
arr_challenge_set = [[x[2], x[3], x[4], x[5]] for x in arr_challenge_set] | |
def get_k_prob_tokens(transition_scores, result, model, k_values=5): | |
tokenizer_tr = dict_tokenizer_tr[model] | |
gen_sequences = result.sequences[:, 1:] | |
result_output = [] | |
# First beam only... | |
bs = 0 | |
text = ' ' | |
for tok, score, i_step in zip(gen_sequences[bs], transition_scores[bs],range(len(gen_sequences[bs]))): | |
beam_i = result.beam_indices[0][i_step] | |
if beam_i < 0: | |
beam_i = bs | |
bs_alt = [tokenizer_tr.decode(tok) for tok in result.scores[i_step][beam_i].topk(k_values).indices ] | |
bs_alt_scores = np.exp(result.scores[i_step][beam_i].topk(k_values).values) | |
result_output.append([np.array(result.scores[i_step][beam_i].topk(k_values).indices), np.array(bs_alt_scores),bs_alt]) | |
return result_output | |
def split_token_from_sequences(sequences, model) -> dict : | |
n_sentences = len(sequences) | |
gen_sequences_texts = [] | |
for bs in range(n_sentences): | |
# gen_sequences_texts.append(dict_tokenizer_tr[model].decode(sequences[:, 1:][bs], skip_special_tokens=True).split(' ')) | |
#### decoder per token. | |
seq_bs = [] | |
for token in sequences[:, 1:][bs]: | |
seq_bs.append(dict_tokenizer_tr[model].decode(token, skip_special_tokens=True)) | |
gen_sequences_texts.append(seq_bs) | |
score = 0 | |
#raw dict is bos | |
text = 'bos' | |
new_id = text +'--1' | |
dict_parent = [{'id': new_id, 'parentId': None , 'text': text, 'name': 'bos', 'prob': score }] | |
id_dict_pos = {} | |
step_i = 0 | |
cont = True | |
words_by_step = [] #[['bos' for i in range(n_sentences)]] | |
while cont: | |
# append to dict_parent for all beams of step_i | |
cont = False | |
step_words = [] | |
for beam in range(n_sentences): | |
app_text = '<empty_word>' | |
if step_i < len(gen_sequences_texts[beam]): | |
app_text = gen_sequences_texts[beam][step_i] | |
cont = True | |
step_words.append(app_text) | |
words_by_step.append(step_words) | |
print(words_by_step) | |
for i_bs, step_w in enumerate(step_words): | |
if not step_w in ['<empty_word>', '<pad>']: | |
#new id if the same word is not in another beam (?) [beam[i] was a token id] | |
#parent id = previous word and previous step. | |
# new_parent_id = "-".join([str(beam[i]) for i in range(step_i)]) | |
new_id = "-".join([str(words_by_step[i][i_bs])+ '-' + str(i) for i in range(step_i+1)]) | |
parent_id = "-".join([words_by_step[i][i_bs] + '-' + str(i) for i in range(step_i) ]) | |
# new_id = step_w +'-' + str(step_i) | |
# parent_id = words_by_step[step_i-1][i_bs] + '-' + str(step_i -1) | |
next_word_flag = 1 | |
if step_i == 0 : | |
parent_id = 'bos--1' | |
## if the dict already exists remove it, if it is not a root... | |
## root?? then next is '' | |
else: | |
next_word_flag = len(gen_sequences_texts[i_bs][step_i]) > step_i ## Not in step_i = 0; | |
if next_word_flag: | |
if not (new_id in id_dict_pos): | |
dict_parent.append({'id': new_id, 'parentId': parent_id , 'text': step_w, 'name': step_w, 'prob' : score }) | |
id_dict_pos[new_id] = len(dict_parent) - 1 | |
else: | |
if not (new_id in id_dict_pos): | |
dict_parent.append({'id': new_id, 'parentId': parent_id , 'text': step_w, 'name': step_w, 'prob' : score }) | |
id_dict_pos[new_id] = len(dict_parent) - 1 | |
step_i += 1 | |
return dict_parent | |
## Tokenization | |
def compute_tokenization(inputs, targets, w1, model): | |
colors = ['tok-first-color', 'tok-second-color', 'tok-third-color', 'tok-fourth-color'] | |
len_colors = len(colors); | |
inputs = inputs.input_ids | |
html_tokens = "" | |
i = 0 | |
for sentence in inputs: | |
html_tokens += "<p>" | |
# print("TOKENS", inputs, targets) | |
# print("input", [dict_tokenizer_tr[model].decode(tok) for tok in sentence]) | |
tokens = [dict_tokenizer_tr[model].decode(tok) for tok in sentence] | |
for token in tokens: | |
token = token.replace("<", "<'") # .substring(0, token.length - 2) | |
html_tokens += "<span class='" + colors[i % len_colors] + "'>" + token + " </span>" | |
i +=1 | |
html_tokens += "</p>" | |
i = 0 | |
# for tgt_sentence in targets : | |
html_tokens_tgt = "" | |
html_tokens_tgt += "<p>" | |
# print("targets", [dict_tokenizer_tr[model].decode(tok) for tok in targets]) | |
# print("targets", dict_tokenizer_tr[model].decode(targets)) | |
tokens = [dict_tokenizer_tr[model].decode(tok) for tok in targets] | |
for token in tokens: | |
token = token.replace("<", "<'") # .substring(0, token.length - 2) | |
html_tokens_tgt += "<span class='" + colors[i % len_colors] + "'>" + token + " </span>" | |
i +=1 | |
html_tokens_tgt += "</p>" | |
# print("HTML", html_tokens, html_tokens_tgt) | |
return html_tokens, html_tokens_tgt | |
def create_vocab_multiple(embeddings_list, model): | |
"""_summary_ | |
Args: | |
embeddings_list (list): embedding array | |
Returns: | |
Dict: vocabulary of tokens' embeddings | |
""" | |
print("START VOCAB CREATION MULTIPLE \n \n ") | |
vocab = {} ## add embedds. | |
sentence_tokens_text_list = [] | |
for embeddings in embeddings_list: | |
tokens_id = embeddings['tokens'] # [[tokens_id]x n_sentences ] | |
for sent_i, sentence in enumerate(tokens_id): | |
sentence_tokens = [] | |
for tok_i, token in enumerate(sentence): | |
sentence_tokens.append(token) | |
if not (token in vocab): | |
vocab[token] = { | |
'token' : token, | |
'count': 1, | |
# 'text': embeddings['texts'][sent_i][tok_i], | |
'text': dict_tokenizer_tr[model].decode([token]), | |
# 'text': src_token_lists[sent_i][tok_i], | |
'embed': embeddings['embeddings'][sent_i][tok_i]} | |
else: | |
vocab[token]['count'] = vocab[token]['count'] + 1 | |
# print(vocab) | |
sentence_tokens_text_list.append(sentence_tokens) | |
print("END VOCAB CREATION MULTIPLE \n \n ") | |
return vocab, sentence_tokens_text_list | |
def vocab_words_all_prefix(token_embeddings, model, sufix="@@",prefix = '▁' ): | |
vocab = {} | |
# inf_model = dict_models_tr[model] | |
sentence_words_text_list = [] | |
if prefix : | |
n_prefix = len(prefix) | |
for input_sentences in token_embeddings: | |
# n_tokens_in_word | |
for sent_i, sentence in enumerate(input_sentences['tokens']): | |
words_text_list = [] | |
# embedding = input_sentences['embed'][sent_i] | |
word = '' | |
tokens_ids = [] | |
embeddings = [] | |
ids_to_tokens = dict_tokenizer_tr[model].convert_ids_to_tokens(sentence) | |
# print("validate same len", len(sentence) == len(ids_to_tokens), len(sentence), len(ids_to_tokens), ids_to_tokens) | |
to_save= False | |
for tok_i, token_text in enumerate(ids_to_tokens): | |
token_id = sentence[tok_i] | |
if token_text[:n_prefix] == prefix : | |
#first we save the previous word | |
if to_save: | |
vocab[word] = { | |
'word' : word, | |
'text': word, | |
'count': 1, | |
'tokens_ids' : tokens_ids, | |
'embed': np.mean(np.array(embeddings), 0).tolist() | |
} | |
words_text_list.append(word) | |
#word is starting if prefix | |
tokens_ids = [token_id] | |
embeddings = [input_sentences['embeddings'][sent_i][tok_i]] | |
word = token_text[n_prefix:] | |
## if word | |
to_save = True | |
else : | |
if (token_text in dict_tokenizer_tr[model].special_tokens_map.values()): | |
# print('final or save', token_text, token_id, to_save, word) | |
if to_save: | |
# vocab[word] = ids | |
vocab[word] = { | |
'word' : word, | |
'text': word, | |
'count': 1, | |
'tokens_ids' : tokens_ids, | |
'embed': np.mean(np.array(embeddings), 0).tolist() | |
} | |
words_text_list.append(word) | |
#special token is one token element, no continuation | |
# vocab[token_text] = [token_id] | |
tokens_ids = [token_id] | |
embeddings = [input_sentences['embeddings'][sent_i][tok_i]] | |
vocab[token_text] = { | |
'word' : token_text, | |
'count': 1, | |
'text': word, | |
'tokens_ids' : tokens_ids, | |
'embed': np.mean(np.array(embeddings), 0).tolist() | |
} | |
words_text_list.append(token_text) | |
to_save = False | |
else: | |
# is a continuation; we do not know if it is final; we don't save here. | |
to_save = True | |
word += token_text | |
tokens_ids.append(token_id) | |
embeddings.append(input_sentences['embeddings'][sent_i][tok_i]) | |
if to_save: | |
# print('final save', token_text, token_id, to_save, word) | |
vocab[word] = tokens_ids | |
if not (word in vocab): | |
vocab[word] = { | |
'word' : word, | |
'count': 1, | |
'text': word, | |
'tokens_ids' : tokens_ids, | |
'embed': np.mean(np.array(embeddings), 0).tolist() | |
} | |
words_text_list.append(word) | |
else: | |
vocab[word]['count'] = vocab[word]['count'] + 1 | |
sentence_words_text_list.append(words_text_list) | |
return vocab, sentence_words_text_list | |
def search_query_vocab(index, vocab_queries, topk = 10, limited_search = []): | |
""" the embed queries are a vocabulary of words : embds_input_voc | |
Args: | |
index (_type_): faiss index | |
embed_queries (_type_): vocab format. | |
{ 'token' : token, | |
'count': 1, | |
'text': src_token_lists[sent_i][tok_i], | |
'embed': embeddings[0]['embeddings'][sent_i][tok_i] } | |
nb_ids (_type_): hash to find the token_id w.r.t the faiss index id. | |
topk (int, optional): nb of similar tokens. Defaults to 10. | |
Returns: | |
_type_: Distance matrix D, indices matrix I and tokens ids (using nb_ids) | |
""" | |
# nb_qi_ids = [] ##ordered ids list | |
nb_q_embds = [] ##ordered embeddings list | |
metadata = {} | |
qi_pos = 0 | |
for key , token_values in vocab_queries.items(): | |
# nb_qi_ids.append(token_values['token']) # for x in vocab_tokens] | |
metadata[qi_pos] = {'word': token_values['word'], 'tokens': token_values['tokens_ids'], 'text': token_values['text']} | |
qi_pos += 1 | |
nb_q_embds.append(token_values['embed']) # for x in vocab_tokens] | |
xq = np.array(nb_q_embds).astype('float32') #elements to query | |
D,I = index.search(xq, topk) | |
return D,I, metadata | |
def search_query_vocab_token(index, vocab_queries, topk = 10, limited_search = []): | |
""" the embed queries are a vocabulary of words : embds_input_vov | |
Returns: | |
_type_: Distance matrix D, indices matrix I and tokens ids (using nb_ids) | |
""" | |
# nb_qi_ids = [] ##ordered ids list | |
nb_q_embds = [] ##ordered embeddings list | |
metadata = {} | |
qi_pos = 0 | |
for key , token_values in vocab_queries.items(): | |
# nb_qi_ids.append(token_values['token']) # for x in vocab_tokens] | |
metadata[qi_pos] = {'token': token_values['token'], 'text': token_values['text']} | |
qi_pos += 1 | |
nb_q_embds.append(token_values['embed']) # for x in vocab_tokens] | |
xq = np.array(nb_q_embds).astype('float32') #elements to query | |
D,I = index.search(xq, topk) | |
return D,I, metadata | |
def build_search(query_embeddings, model,type="input"): | |
metadata_all = dict_reference_faiss[model] | |
# ## biuld vocab for index | |
vocab_queries, sentence_tokens_list = create_vocab_multiple(query_embeddings, model) | |
words_vocab_queries, sentence_words_list = vocab_words_all_prefix(query_embeddings, model, sufix="@@",prefix="▁") | |
index_vor_tokens = metadata_all[type]['tokens'][1] | |
md_tokens = metadata_all[type]['tokens'][2] | |
D, I, meta = search_query_vocab_token(index_vor_tokens, vocab_queries) | |
qi_pos = 0 | |
similar_tokens = {} | |
# similar_tokens = [] | |
for dist, ind in zip(D,I): | |
try: | |
# similar_tokens.append({ | |
similar_tokens[str(meta[qi_pos]['token'])] = { | |
'token': meta[qi_pos]['token'], | |
'text': meta[qi_pos]['text'], | |
# 'text': dict_tokenizer_tr[model].decode(meta[qi_pos]['token']) | |
# 'text': meta[qi_pos]['text'], | |
"similar_topk": [md_tokens[i_index]['token'] for i_index in ind if (i_index != -1) ], | |
"distance": [dist[i] for (i, i_index) in enumerate(ind) if (i_index != -1)], | |
} | |
# ) | |
except: | |
print("\n ERROR ", qi_pos, dist, ind) | |
qi_pos += 1 | |
index_vor_words = metadata_all[type]['words'][1] | |
md_words = metadata_all[type]['words'][2] | |
Dw, Iw, metaw = search_query_vocab(index_vor_words, words_vocab_queries) | |
# D, I, meta, vocab_words, sentence_words_list = result_input['words']# [2] # D ; I ; meta | |
qi_pos = 0 | |
# similar_words = [] | |
similar_words = {} | |
for dist, ind in zip(Dw,Iw): | |
try: | |
# similar_words.append({ | |
similar_words[str(metaw[qi_pos]['word']) ] = { | |
'word': metaw[qi_pos]['word'], | |
'text': metaw[qi_pos]['word'], | |
"similar_topk": [md_words[i_index]['word'] for i_index in ind if (i_index != -1) ], | |
"distance": [dist[i] for (i, i_index) in enumerate(ind) if (i_index != -1)], | |
} | |
# ) | |
except: | |
print("\n ERROR ", qi_pos, dist, ind) | |
qi_pos += 1 | |
return {'tokens': {'D': D, 'I': I, 'meta': meta, 'vocab_queries': vocab_queries, 'similar':similar_tokens, 'sentence_key_list': sentence_tokens_list}, | |
'words': {'D':Dw,'I': Iw, 'meta': metaw, 'vocab_queries':words_vocab_queries, 'sentence_key_list': sentence_words_list, 'similar': similar_words} | |
} | |
from sklearn.manifold import TSNE | |
def embds_input_projection_vocab(vocab, key="token"): | |
t0 = time() | |
nb_ids = [] ##ordered ids list | |
nb_embds = [] ##ordered embeddings list | |
nb_text = [] ##ordered embeddings list | |
tnse_error = [] | |
for _ , token_values in vocab.items(): | |
tnse_error.append([0,0]) | |
nb_ids.append(token_values[key]) # for x in vocab_tokens] | |
nb_text.append(token_values['text']) # for x in vocab_tokens] | |
nb_embds.append(token_values['embed']) # for x in vocab_tokens] | |
X = np.array(nb_embds).astype('float32') #elements to project | |
try: | |
tsne = TSNE(random_state=0, n_iter=1000) | |
tsne_results = tsne.fit_transform(X) | |
tsne_results = np.c_[tsne_results, nb_ids, nb_text, range(len(nb_ids))] ## creates a zip array : [[TNSE[X,Y], tokenid, token_text], ...] | |
except: | |
tsne_results = np.c_[tnse_error, nb_ids, nb_text, range(len(nb_ids))] ## creates a zip array : [[TNSE[X,Y], tokenid, token_text], ...] | |
t1 = time() | |
print("t-SNE: %.2g sec" % (t1 - t0)) | |
# print(tsne_results) | |
return tsne_results.tolist() | |
def filtered_projection(similar_key, vocab, model, type="input", key="word"): | |
metadata_all = dict_reference_faiss[model] | |
vocab_proj = vocab.copy() | |
## tnse projection Input words | |
source_words_voc_similar = set() | |
# for words_set in similar_key: | |
for key_i in similar_key: | |
words_set = similar_key[key_i] | |
source_words_voc_similar.update(words_set['similar_topk']) | |
# print(len(source_words_voc_similar)) | |
# source_embeddings_filtered = {key: metadata_all['input']['words'][0][key] for key in source_words_voc_similar} | |
source_embeddings_filtered = {key_value: metadata_all[type][key][0][key_value] for key_value in source_words_voc_similar} | |
vocab_proj.update(source_embeddings_filtered) | |
## vocab_proj add | |
try: | |
result_TSNE = embds_input_projection_vocab(vocab_proj, key=key[:-1]) ## singular => without 's' | |
dict_projected_embds_all = {str(embds[2]): [embds[0], embds[1], embds[2], embds[3], embds[4]] for embds in result_TSNE} | |
except: | |
print('TSNE error', type, key) | |
dict_projected_embds_all = {} | |
# print(result_TSNE) | |
return dict_projected_embds_all | |
def get_bertvis_data(input_text, lg_model): | |
tokenizer_tr = dict_tokenizer_tr[lg_model] | |
model_tr = dict_models_tr[lg_model] | |
# input_ids = tokenizer_tr(input_text, return_tensors="pt", padding=True) | |
input_ids = tokenizer_tr(input_text, return_tensors="pt", padding=False) | |
result_att = model_tr.generate(**input_ids, | |
num_beams=4, | |
num_return_sequences=4, | |
return_dict_in_generate=True, | |
output_attentions =True, | |
output_scores=True, | |
) | |
# tokenizer_tr.convert_ids_to_tokens(result_att.sequences[0]) | |
# tokenizer_tr.convert_ids_to_tokens(input_ids.input_ids[0]) | |
tgt_text = tokenizer_tr.decode(result_att.sequences[0], skip_special_tokens=True) | |
outputs = model_tr(input_ids=input_ids.input_ids, | |
decoder_input_ids=result_att.sequences[:1], | |
output_attentions =True, | |
) | |
html_attentions = head_view_mod( | |
encoder_attention = outputs.encoder_attentions, | |
cross_attention = outputs.cross_attentions, | |
decoder_attention = outputs.decoder_attentions, | |
encoder_tokens = tokenizer_tr.convert_ids_to_tokens(input_ids.input_ids[0]), | |
decoder_tokens = tokenizer_tr.convert_ids_to_tokens(result_att.sequences[0]), | |
html_action='gradio' | |
) | |
return html_attentions, tgt_text, result_att, outputs | |
def translation_model(w1, model): | |
#translate and get internal values and visualizations; | |
# src_text = saliency_examples[0] | |
inputs = dict_tokenizer_tr[model](w1, return_tensors="pt", padding=True) | |
num_ret_seq = 4 | |
translated = dict_models_tr[model].generate(**inputs, | |
num_beams=4, | |
num_return_sequences=num_ret_seq, | |
return_dict_in_generate=True, | |
output_attentions =True, | |
output_hidden_states = True, | |
output_scores=True,) | |
beam_dict = split_token_from_sequences(translated.sequences,model ) | |
tgt_text = dict_tokenizer_tr[model].decode(translated.sequences[0], skip_special_tokens=True) | |
## Attentions | |
outputs = dict_models_tr[model](input_ids=inputs.input_ids, | |
decoder_input_ids=translated.sequences[:1], | |
output_attentions =True, | |
) | |
encoder_tokens = dict_tokenizer_tr[model].convert_ids_to_tokens(inputs.input_ids[0]) | |
decoder_tokens = dict_tokenizer_tr[model].convert_ids_to_tokens(translated.sequences[0]) | |
# decoder_tokens = [tok for tok in decoder_tokens if tok != '<pad>'] | |
# decoder_tokens = [tok for tok in decoder_tokens if tok != '<pad>'] | |
# html_attentions = head_view_mod( | |
# encoder_attention = outputs.encoder_attentions, | |
# cross_attention = outputs.cross_attentions, | |
# decoder_attention = outputs.decoder_attentions, | |
# encoder_tokens = encoder_tokens, | |
# decoder_tokens = decoder_tokens, | |
# html_action='gradio' | |
# ) | |
html_attentions_enc = head_view_mod( | |
encoder_attention = outputs.encoder_attentions, | |
encoder_tokens = encoder_tokens, | |
decoder_tokens = decoder_tokens, | |
html_action='gradio' | |
) | |
html_attentions_dec = head_view_mod( | |
# encoder_attention = outputs.encoder_attentions, | |
decoder_attention = outputs.decoder_attentions, | |
encoder_tokens = encoder_tokens, | |
decoder_tokens = decoder_tokens, | |
html_action='gradio' | |
) | |
html_attentions_cross = head_view_mod( | |
cross_attention = outputs.cross_attentions, | |
encoder_tokens = encoder_tokens, | |
decoder_tokens = decoder_tokens, | |
html_action='gradio' | |
) | |
# tokenization | |
html_in, html_out = compute_tokenization(inputs, translated.sequences[0],w1, model) | |
transition_scores = dict_models_tr[model].compute_transition_scores( | |
translated.sequences, translated.scores, translated.beam_indices , normalize_logits=True | |
) | |
prob_tokens = get_k_prob_tokens(transition_scores, translated, model, k_values=10) | |
input_embeddings = dict_models_tr[model].get_encoder().embed_tokens(inputs.input_ids) | |
target_embeddings = dict_models_tr[model].get_decoder().embed_tokens(translated.sequences) | |
return [tgt_text, | |
[beam_dict,prob_tokens, html_in, html_out, translated, inputs.input_ids,input_embeddings,target_embeddings], | |
[html_attentions_enc['params'], html_attentions_enc['html2'].data], | |
[html_attentions_dec['params'], html_attentions_dec['html2'].data], | |
[html_attentions_cross['params'], html_attentions_cross['html2'].data] ] | |
html = """ | |
<html> | |
<script async src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js"></script> | |
<style> | |
.tok-first-color { | |
background: #e0ffcd; | |
} | |
.tok-second-color { | |
background: #fdffcd; | |
} | |
.tok-third-color { | |
background: #ffebbb; | |
} | |
.tok-fourth-color { | |
background: #ffcab0; | |
} | |
</style> | |
<body> | |
<p id="demo"></p> | |
<p id="viz"></p> | |
<p id="demo2"></p> | |
<h4> Exploring top-k probable tokens </h4> | |
<div id="d3_text_grid">... top 10 tokens generated at each step ...</div> | |
<h4> Exploring the Beam Search sequence generation</h4> | |
<div id="d3_beam_search">... top 4 generated sequences using Beam Search...</div> | |
</body> | |
</html> | |
""" | |
html_tok = """ | |
<div id="d3_tok">... tokenization visualization ...</div> | |
""" | |
html_embd = """ | |
<div id="d3_embd">... token embeddings visualization ...</div> | |
<div id="select_div"> | |
<select id="select_type" class="form-select" aria-label="select example" hidden> | |
<option selected value="words">Words</option> | |
<option value="tokens">Tokens</option> | |
</select> | |
</div> | |
<div class="row"> | |
<div class="col-9"> | |
<div id="d3_graph_input_words" class="d3_graph words"></div> | |
</div> | |
<div class="col-3"> | |
<div id="similar_input_words" class=""></div> | |
</div> | |
</div> | |
<div id="d3_graph_input_tokens" class="d3_graph tokens"></div> | |
<div id="similar_input_tokens" class=" "></div> | |
""" | |
html_tok_target =""" | |
<div id="d3_tok_target">... tokenization visualization ...</div> | |
""" | |
html_embd_target= """ | |
<div id="d3_embd_target">... token embeddings visualization ...</div> | |
<div id="d3_graph_output_words" class="d3_graph words"></div> | |
<div id="d3_graph_output_tokens" class="d3_graph tokens"></div> | |
<div id="similar_output_words" class=""></div> | |
<div id="similar_output_tokens" class=" "></div> | |
""" | |
html_att_enc = """ | |
<div id="d3_att_enc">... Encoder self attention only -- last layer and mean across heads ... Always read from left to right</div> | |
<div id="bertviz_enc"></div> | |
""" | |
html_att_cross = """ | |
<div id="d3_att_cross">... Encoder-decoder cross attention only -- last layer and mean across heads ...</div> | |
""" | |
html_att_dec = """ | |
<div id="d3_att_dec">... decoder self attention only -- last layer and mean across heads ...</div> | |
""" | |
def sentence_maker2(w1,j2): | |
print(w1,j2) | |
return "in sentence22..." | |
def first_function(w1, model): | |
global metadata_all | |
#translate and get internal values | |
sentences = w1.split("\n") | |
all_sentences = [] | |
translated_text = '' | |
input_embeddings = [] | |
output_embeddings = [] | |
for sentence in sentences : | |
# print(sentence, end=";") | |
params = translation_model(sentence, model) | |
all_sentences.append(params) | |
# print(len(params)) | |
translated_text += params[0] + ' \n' | |
input_embeddings.append({ | |
'embeddings': params[1][6].detach(), ## create a vocabulary with the set of embeddings | |
'tokens': params[1][3+2].tolist(), # one translation = one sentence | |
# 'texts' : dict_tokenizer_tr[model].decode(params[2].tolist()) | |
}) | |
output_embeddings.append({ | |
'embeddings' : params[1][7].detach(), | |
'tokens': params[1][3+1].sequences.tolist(), | |
# 'texts' : dict_tokenizer_tr[model].decode(params[1].sequences.tolist()) | |
}) | |
## load_reference; | |
## Build FAISS index | |
# ---> preload faiss using the respective model with a initial dataset. | |
## dict_reference_faiss[model] = metadata_all [per language] | |
# result_input = build_reference(input_embeddings,model) | |
# result_output = build_reference(output_embeddings,model) | |
# metadata_all = {'input': result_input, 'output': result_output} | |
## Build FAISS index | |
# ---> preload faiss using the respective model with a initial dataset. | |
result_search = {} | |
result_search['input'] = build_search(input_embeddings, model, type='input') | |
result_search['output'] = build_search(output_embeddings, model, type='output') | |
json_out = {'input': {'tokens': {}, 'words': {}}, 'output': {'tokens': {}, 'words': {}}} | |
dict_projected = {} | |
for type in ['input', 'output']: | |
dict_projected[type] = {} | |
for key in ['tokens', 'words']: | |
similar_key = result_search[type][key]['similar'] | |
vocab = result_search[type][key]['vocab_queries'] | |
dict_projected[type][key] = filtered_projection(similar_key, vocab, model, type=type, key=key) | |
json_out[type][key]['similar_queries'] = similar_key | |
json_out[type][key]['tnse'] = dict_projected[type][key] | |
json_out[type][key]['key_text_list'] = result_search[type][key]['sentence_key_list'] | |
## bertviz | |
# paramsbv, tgtbv = get_bertvis_data(w1, model) | |
# params.append(json_out) | |
html_att_enc = params[2][1]#.root_div_id = "bertviz_enc" | |
html_att_dec = params[3][1] | |
html_att_cross = params[4][1] | |
params = [params[0], params[1], json_out, params[2][0], params[3][0], params[4][0]] | |
# params.append([tgt, params['params'], params['html2'].data] | |
return [translated_text, params, html_att_enc, html_att_dec, html_att_cross] | |
def second_function(w1,j2): | |
# json_value = {'one':1}# return f"{w1['two']} in sentence22..." | |
# to transfer the data to json. | |
print("second_function -- after the js", w1,j2) | |
return "transition to second js function finished." | |
with gr.Blocks(js="plotsjs.js") as demo: | |
gr.Markdown( | |
""" | |
# MAKE NMT Workshop \t `Literacy task` | |
""") | |
gr.Markdown( | |
""" | |
### Translation | |
""") | |
gr.Markdown( | |
""" | |
1. Select the language pair for the translation | |
""") | |
radio_c = gr.Radio(choices=['en-zh', 'en-es', 'en-fr', 'en-sw'], value="en-es", label= '', container=False) | |
gr.Markdown( | |
""" | |
2. Source text to translate | |
""") | |
in_text = gr.Textbox(label="source text") | |
with gr.Accordion("Optional: Challenge selection:", open=False): | |
gr.Markdown( | |
""" | |
### select an example from the challenge set listed bellow | |
""") | |
challenge_ex = gr.Textbox(label="Challenge", interactive=False) | |
category_minor = gr.Textbox(label="category_minor", interactive=False) | |
category_major = gr.Textbox(label="category_major", interactive=False) | |
with gr.Accordion("Examples:"): | |
gr.Examples(arr_challenge_set,[in_text, challenge_ex,category_minor,category_major], label="") | |
btn = gr.Button("Translate") | |
with gr.Accordion("3. Review the source tokenization:", open=False): | |
input_tokenisation = gr.HTML(html_tok) | |
with gr.Accordion("4. Review similar source tokens in the embedding space:", open=False): | |
input_embd= gr.HTML(html_embd) | |
with gr.Accordion("5. Review the attention between the source tokens:", open=False): | |
gr.Markdown( | |
""" | |
`Bertviz ` | |
""") | |
input_embd= gr.HTML(html_att_enc) | |
enc_html = gr.HTML() | |
gr.Markdown( | |
""" | |
### Text is translated into Target Language | |
""") | |
out_text = gr.Textbox(label="target text") | |
with gr.Accordion("1. Review the target tokenization:", open=False): | |
target_tokenisation = gr.HTML(html_tok_target) | |
with gr.Accordion("2. Review similar target tokens in the embedding space:", open=False): | |
target_embd= gr.HTML(html_embd_target) | |
with gr.Accordion("3. Review the attention between the target and source tokens:", open=False): | |
gr.Markdown( | |
""" | |
`Bertviz -cross attention` | |
""") | |
input_embd= gr.HTML(html_att_cross) | |
cross_html = gr.HTML() | |
with gr.Accordion("4. Review the attention between the target tokens:", open=False): | |
gr.Markdown( | |
""" | |
`Bertviz -dec attention` | |
""") | |
input_embd= gr.HTML(html_att_dec) | |
dec_html = gr.HTML() | |
with gr.Accordion("6. Review the alternative translations tokens:", open=False): | |
gr.Markdown( | |
""" | |
Generation process : `topk - beam search ` | |
""") | |
input_mic = gr.HTML(html) | |
out_text2 = gr.Textbox(visible=False) | |
var2 = gr.JSON(visible=False) | |
btn.click(first_function, [in_text, radio_c], [out_text,var2,enc_html, dec_html, cross_html], js="(in_text,radio_c) => testFn_out(in_text,radio_c)") #should return an output comp. | |
out_text.change(second_function, [out_text, var2], out_text2, js="(out_text,var2) => testFn_out_json(var2)") # | |
# run script function on load, | |
# demo.load(None,None,None,js="plotsjs.js") | |
if __name__ == "__main__": | |
demo.launch() |