Spaces:
Sleeping
Sleeping
import json | |
import os | |
import uuid | |
from IPython.core.display import display, HTML, Javascript | |
from bertviz.util import format_special_chars, format_attention, num_layers | |
print("UP TO DATE") | |
def head_view_mod( | |
attention=None, | |
tokens=None, | |
sentence_b_start=None, | |
prettify_tokens=True, | |
layer=None, | |
heads=None, | |
encoder_attention=None, | |
decoder_attention=None, | |
cross_attention=None, | |
encoder_tokens=None, | |
decoder_tokens=None, | |
include_layers=None, | |
html_action='view', | |
patest ="something" | |
): | |
"""Render head view | |
Args: | |
For self-attention models: | |
attention: list of ``torch.FloatTensor``(one for each layer) of shape | |
``(batch_size(must be 1), num_heads, sequence_length, sequence_length)`` | |
tokens: list of tokens | |
sentence_b_start: index of first wordpiece in sentence B if input text is sentence pair (optional) | |
For encoder-decoder models: | |
encoder_attention: list of ``torch.FloatTensor``(one for each layer) of shape | |
``(batch_size(must be 1), num_heads, encoder_sequence_length, encoder_sequence_length)`` | |
decoder_attention: list of ``torch.FloatTensor``(one for each layer) of shape | |
``(batch_size(must be 1), num_heads, decoder_sequence_length, decoder_sequence_length)`` | |
cross_attention: list of ``torch.FloatTensor``(one for each layer) of shape | |
``(batch_size(must be 1), num_heads, decoder_sequence_length, encoder_sequence_length)`` | |
encoder_tokens: list of tokens for encoder input | |
decoder_tokens: list of tokens for decoder input | |
For all models: | |
prettify_tokens: indicates whether to remove special characters in wordpieces, e.g. Ġ | |
layer: index (zero-based) of initial selected layer in visualization. Defaults to layer 0. | |
heads: Indices (zero-based) of initial selected heads in visualization. Defaults to all heads. | |
include_layers: Indices (zero-based) of layers to include in visualization. Defaults to all layers. | |
Note: filtering layers may improve responsiveness of the visualization for long inputs. | |
html_action: Specifies the action to be performed with the generated HTML object | |
- 'view' (default): Displays the generated HTML representation as a notebook cell output | |
- 'return' : Returns an HTML object containing the generated view for further processing or custom visualization | |
""" | |
attn_data = [] | |
if attention is not None: | |
if tokens is None: | |
raise ValueError("'tokens' is required") | |
if encoder_attention is not None or decoder_attention is not None or cross_attention is not None \ | |
or encoder_tokens is not None or decoder_tokens is not None: | |
raise ValueError("If you specify 'attention' you may not specify any encoder-decoder arguments. This" | |
" argument is only for self-attention models.") | |
if include_layers is None: | |
include_layers = list(range(num_layers(attention))) | |
attention = format_attention(attention, include_layers) | |
if sentence_b_start is None: | |
attn_data.append( | |
{ | |
'name': None, | |
'attn': attention.tolist(), | |
'left_text': tokens, | |
'right_text': tokens | |
} | |
) | |
else: | |
slice_a = slice(0, sentence_b_start) # Positions corresponding to sentence A in input | |
slice_b = slice(sentence_b_start, len(tokens)) # Position corresponding to sentence B in input | |
attn_data.append( | |
{ | |
'name': 'All', | |
'attn': attention.tolist(), | |
'left_text': tokens, | |
'right_text': tokens | |
} | |
) | |
attn_data.append( | |
{ | |
'name': 'Sentence A -> Sentence A', | |
'attn': attention[:, :, slice_a, slice_a].tolist(), | |
'left_text': tokens[slice_a], | |
'right_text': tokens[slice_a] | |
} | |
) | |
attn_data.append( | |
{ | |
'name': 'Sentence B -> Sentence B', | |
'attn': attention[:, :, slice_b, slice_b].tolist(), | |
'left_text': tokens[slice_b], | |
'right_text': tokens[slice_b] | |
} | |
) | |
attn_data.append( | |
{ | |
'name': 'Sentence A -> Sentence B', | |
'attn': attention[:, :, slice_a, slice_b].tolist(), | |
'left_text': tokens[slice_a], | |
'right_text': tokens[slice_b] | |
} | |
) | |
attn_data.append( | |
{ | |
'name': 'Sentence B -> Sentence A', | |
'attn': attention[:, :, slice_b, slice_a].tolist(), | |
'left_text': tokens[slice_b], | |
'right_text': tokens[slice_a] | |
} | |
) | |
elif encoder_attention is not None or decoder_attention is not None or cross_attention is not None: | |
if encoder_attention is not None: | |
if encoder_tokens is None: | |
raise ValueError("'encoder_tokens' required if 'encoder_attention' is not None") | |
if include_layers is None: | |
include_layers = list(range(num_layers(encoder_attention))) | |
encoder_attention = format_attention(encoder_attention, include_layers) | |
attn_data.append( | |
{ | |
'name': 'Encoder', | |
'attn': encoder_attention.tolist(), | |
'left_text': encoder_tokens, | |
'right_text': encoder_tokens | |
} | |
) | |
if decoder_attention is not None: | |
if decoder_tokens is None: | |
raise ValueError("'decoder_tokens' required if 'decoder_attention' is not None") | |
if include_layers is None: | |
include_layers = list(range(num_layers(decoder_attention))) | |
decoder_attention = format_attention(decoder_attention, include_layers) | |
attn_data.append( | |
{ | |
'name': 'Decoder', | |
'attn': decoder_attention.tolist(), | |
'left_text': decoder_tokens, | |
'right_text': decoder_tokens | |
} | |
) | |
if cross_attention is not None: | |
if encoder_tokens is None: | |
raise ValueError("'encoder_tokens' required if 'cross_attention' is not None") | |
if decoder_tokens is None: | |
raise ValueError("'decoder_tokens' required if 'cross_attention' is not None") | |
if include_layers is None: | |
include_layers = list(range(num_layers(cross_attention))) | |
cross_attention = format_attention(cross_attention, include_layers) | |
attn_data.append( | |
{ | |
'name': 'Cross', | |
'attn': cross_attention.tolist(), | |
'left_text': decoder_tokens, | |
'right_text': encoder_tokens | |
} | |
) | |
else: | |
raise ValueError("You must specify at least one attention argument.") | |
if layer is not None and layer not in include_layers: | |
raise ValueError(f"Layer {layer} is not in include_layers: {include_layers}") | |
# Generate unique div id to enable multiple visualizations in one notebook | |
vis_id = 'bertviz-%s'%(uuid.uuid4().hex) | |
# vis_id = 'bertviz'#-%s'%(uuid.uuid4().hex) | |
# Compose html | |
if len(attn_data) > 1: | |
options = '\n'.join( | |
f'<option value="{i}">{attn_data[i]["name"]}</option>' | |
for i, d in enumerate(attn_data) | |
) | |
select_html = f'Attention: <select id="filter">{options}</select>' | |
else: | |
select_html = "" | |
vis_html = f""" | |
<div id="{vis_id}" style="font-family:'Helvetica Neue', Helvetica, Arial, sans-serif;"> | |
<span style="user-select:none"> | |
Layer: <select id="layer"></select> | |
{select_html} | |
</span> | |
<div id='vis'></div> | |
</div> | |
""" | |
for d in attn_data: | |
attn_seq_len_left = len(d['attn'][0][0]) | |
if attn_seq_len_left != len(d['left_text']): | |
raise ValueError( | |
f"Attention has {attn_seq_len_left} positions, while number of tokens is {len(d['left_text'])} " | |
f"for tokens: {' '.join(d['left_text'])}" | |
) | |
attn_seq_len_right = len(d['attn'][0][0][0]) | |
if attn_seq_len_right != len(d['right_text']): | |
raise ValueError( | |
f"Attention has {attn_seq_len_right} positions, while number of tokens is {len(d['right_text'])} " | |
f"for tokens: {' '.join(d['right_text'])}" | |
) | |
if prettify_tokens: | |
d['left_text'] = format_special_chars(d['left_text']) | |
d['right_text'] = format_special_chars(d['right_text']) | |
params = { | |
'attention': attn_data, | |
'default_filter': "0", | |
'root_div_id': vis_id, | |
'layer': layer, | |
'heads': heads, | |
'include_layers': include_layers, | |
'test': 'test' | |
} | |
# require.js must be imported for Colab or JupyterLab: | |
if html_action == 'gradio': | |
html1 = HTML('<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js"></script>') | |
html2 = HTML(vis_html) | |
return {'html1': html1, 'html2' : html2, 'params': params } | |
if html_action == 'view': | |
display(HTML('<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js"></script>')) | |
display(HTML(vis_html)) | |
__location__ = os.path.realpath( | |
os.path.join(os.getcwd(), os.path.dirname(__file__))) | |
vis_js = open(os.path.join(__location__, 'head_view.js')).read().replace("PYTHON_PARAMS", json.dumps(params)) | |
display(Javascript(vis_js)) | |
elif html_action == 'return': | |
html1 = HTML('<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js"></script>') | |
html2 = HTML(vis_html) | |
__location__ = os.path.realpath( | |
os.path.join(os.getcwd(), os.path.dirname(__file__))) | |
vis_js = open(os.path.join(__location__, 'head_view.js')).read().replace("PYTHON_PARAMS", json.dumps(params)) | |
html3 = Javascript(vis_js) | |
script = '\n<script type="text/javascript">\n' + html3.data + '\n</script>\n' | |
head_html = HTML(html1.data + html2.data + script) | |
return head_html | |
else: | |
raise ValueError("'html_action' parameter must be 'view' or 'return") |