3DOI / monoarti /vnl_loss.py
Shengyi Qian
init
9afcee2
import torch
import torch.nn
import numpy as np
import pdb
class VNL_Loss(torch.nn.Module):
"""
Virtual Normal Loss Function.
"""
def __init__(self, focal_x, focal_y, input_size,
delta_cos=0.867, delta_diff_x=0.01,
delta_diff_y=0.01, delta_diff_z=0.01,
delta_z=0.0001, sample_ratio=0.15):
super(VNL_Loss, self).__init__()
self.fx = torch.tensor([focal_x], dtype=torch.float32) #.to(cuda0)
self.fy = torch.tensor([focal_y], dtype=torch.float32) #.to(cuda0)
self.input_size = input_size
self.u0 = torch.tensor(input_size[1] // 2, dtype=torch.float32) #.to(cuda0)
self.v0 = torch.tensor(input_size[0] // 2, dtype=torch.float32) #.to(cuda0)
self.init_image_coor()
self.delta_cos = delta_cos
self.delta_diff_x = delta_diff_x
self.delta_diff_y = delta_diff_y
self.delta_diff_z = delta_diff_z
self.delta_z = delta_z
self.sample_ratio = sample_ratio
def init_image_coor(self):
x_row = np.arange(0, self.input_size[1])
x = np.tile(x_row, (self.input_size[0], 1))
x = x[np.newaxis, :, :]
x = x.astype(np.float32)
x = torch.from_numpy(x.copy()) #.to(cuda0)
self.u_u0 = x - self.u0
y_col = np.arange(0, self.input_size[0]) # y_col = np.arange(0, height)
y = np.tile(y_col, (self.input_size[1], 1)).T
y = y[np.newaxis, :, :]
y = y.astype(np.float32)
y = torch.from_numpy(y.copy()) #.to(cuda0)
self.v_v0 = y - self.v0
def transfer_xyz(self, depth):
# print('!!!!!!!!!!!!!!!111111 ', self.u_u0.device, torch.abs(depth).device, self.fx.device)
x = self.u_u0 * torch.abs(depth) / self.fx
y = self.v_v0 * torch.abs(depth) / self.fy
z = depth
pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c]
return pw
def select_index(self):
valid_width = self.input_size[1]
valid_height = self.input_size[0]
num = valid_width * valid_height
p1 = np.random.choice(num, int(num * self.sample_ratio), replace=True)
np.random.shuffle(p1)
p2 = np.random.choice(num, int(num * self.sample_ratio), replace=True)
np.random.shuffle(p2)
p3 = np.random.choice(num, int(num * self.sample_ratio), replace=True)
np.random.shuffle(p3)
p1_x = p1 % self.input_size[1]
p1_y = (p1 / self.input_size[1]).astype(np.int)
p2_x = p2 % self.input_size[1]
p2_y = (p2 / self.input_size[1]).astype(np.int)
p3_x = p3 % self.input_size[1]
p3_y = (p3 / self.input_size[1]).astype(np.int)
p123 = {'p1_x': p1_x, 'p1_y': p1_y, 'p2_x': p2_x, 'p2_y': p2_y, 'p3_x': p3_x, 'p3_y': p3_y}
return p123
def form_pw_groups(self, p123, pw):
"""
Form 3D points groups, with 3 points in each grouup.
:param p123: points index
:param pw: 3D points
:return:
"""
p1_x = p123['p1_x']
p1_y = p123['p1_y']
p2_x = p123['p2_x']
p2_y = p123['p2_y']
p3_x = p123['p3_x']
p3_y = p123['p3_y']
pw1 = pw[:, p1_y, p1_x, :]
pw2 = pw[:, p2_y, p2_x, :]
pw3 = pw[:, p3_y, p3_x, :]
# [B, N, 3(x,y,z), 3(p1,p2,p3)]
pw_groups = torch.cat([pw1[:, :, :, np.newaxis], pw2[:, :, :, np.newaxis], pw3[:, :, :, np.newaxis]], 3)
return pw_groups
def filter_mask(self, p123, gt_xyz, delta_cos=0.867,
delta_diff_x=0.005,
delta_diff_y=0.005,
delta_diff_z=0.005):
pw = self.form_pw_groups(p123, gt_xyz)
pw12 = pw[:, :, :, 1] - pw[:, :, :, 0]
pw13 = pw[:, :, :, 2] - pw[:, :, :, 0]
pw23 = pw[:, :, :, 2] - pw[:, :, :, 1]
###ignore linear
pw_diff = torch.cat([pw12[:, :, :, np.newaxis], pw13[:, :, :, np.newaxis], pw23[:, :, :, np.newaxis]],
3) # [b, n, 3, 3]
m_batchsize, groups, coords, index = pw_diff.shape
proj_query = pw_diff.view(m_batchsize * groups, -1, index).permute(0, 2, 1) # (B* X CX(3)) [bn, 3(p123), 3(xyz)]
proj_key = pw_diff.view(m_batchsize * groups, -1, index) # B X (3)*C [bn, 3(xyz), 3(p123)]
q_norm = proj_query.norm(2, dim=2)
nm = torch.bmm(q_norm.view(m_batchsize * groups, index, 1), q_norm.view(m_batchsize * groups, 1, index)) #[]
energy = torch.bmm(proj_query, proj_key) # transpose check [bn, 3(p123), 3(p123)]
norm_energy = energy / (nm + 1e-8)
norm_energy = norm_energy.view(m_batchsize * groups, -1)
mask_cos = torch.sum((norm_energy > delta_cos) + (norm_energy < -delta_cos), 1) > 3 # igonre
mask_cos = mask_cos.view(m_batchsize, groups)
##ignore padding and invilid depth
mask_pad = torch.sum(pw[:, :, 2, :] > self.delta_z, 2) == 3
###ignore near
mask_x = torch.sum(torch.abs(pw_diff[:, :, 0, :]) < delta_diff_x, 2) > 0
mask_y = torch.sum(torch.abs(pw_diff[:, :, 1, :]) < delta_diff_y, 2) > 0
mask_z = torch.sum(torch.abs(pw_diff[:, :, 2, :]) < delta_diff_z, 2) > 0
mask_ignore = (mask_x & mask_y & mask_z) | mask_cos
mask_near = ~mask_ignore
mask = mask_pad & mask_near
return mask, pw
def select_points_groups(self, gt_depth, pred_depth):
pw_gt = self.transfer_xyz(gt_depth)
pw_pred = self.transfer_xyz(pred_depth)
#pdb.set_trace()
B, C, H, W = gt_depth.shape
p123 = self.select_index()
# mask:[b, n], pw_groups_gt: [b, n, 3(x,y,z), 3(p1,p2,p3)]
mask, pw_groups_gt = self.filter_mask(p123, pw_gt,
delta_cos=0.867,
delta_diff_x=0.005,
delta_diff_y=0.005,
delta_diff_z=0.005)
# [b, n, 3, 3]
pw_groups_pred = self.form_pw_groups(p123, pw_pred)
pw_groups_pred[pw_groups_pred[:, :, 2, :] == 0] = 0.0001
mask_broadcast = mask.repeat(1, 9).reshape(B, 3, 3, -1).permute(0, 3, 1, 2)
pw_groups_pred_not_ignore = pw_groups_pred[mask_broadcast].reshape(1, -1, 3, 3)
pw_groups_gt_not_ignore = pw_groups_gt[mask_broadcast].reshape(1, -1, 3, 3)
return pw_groups_gt_not_ignore, pw_groups_pred_not_ignore
def forward(self, gt_depth, pred_depth, select=True):
"""
Virtual normal loss.
:param pred_depth: predicted depth map, [B,W,H,C]
:param data: target label, ground truth depth, [B, W, H, C], padding region [padding_up, padding_down]
:return:
"""
device = gt_depth.device
self.fx = self.fx.to(device)
self.fy = self.fy.to(device)
self.u0 = self.u0.to(device)
self.v0 = self.v0.to(device)
self.u_u0 = self.u_u0.to(device)
self.v_v0 = self.v_v0.to(device)
# print("************ ", self.fx.device, self.u_u0.device)
gt_points, dt_points = self.select_points_groups(gt_depth, pred_depth)
gt_p12 = gt_points[:, :, :, 1] - gt_points[:, :, :, 0]
gt_p13 = gt_points[:, :, :, 2] - gt_points[:, :, :, 0]
dt_p12 = dt_points[:, :, :, 1] - dt_points[:, :, :, 0]
dt_p13 = dt_points[:, :, :, 2] - dt_points[:, :, :, 0]
gt_normal = torch.cross(gt_p12, gt_p13, dim=2)
dt_normal = torch.cross(dt_p12, dt_p13, dim=2)
dt_norm = torch.norm(dt_normal, 2, dim=2, keepdim=True)
gt_norm = torch.norm(gt_normal, 2, dim=2, keepdim=True)
dt_mask = dt_norm == 0.0
gt_mask = gt_norm == 0.0
dt_mask = dt_mask.to(torch.float32)
gt_mask = gt_mask.to(torch.float32)
dt_mask *= 0.01
gt_mask *= 0.01
gt_norm = gt_norm + gt_mask
dt_norm = dt_norm + dt_mask
gt_normal = gt_normal / gt_norm
dt_normal = dt_normal / dt_norm
#pdb.set_trace()
loss = torch.abs(gt_normal - dt_normal)
loss = torch.sum(torch.sum(loss, dim=2), dim=0)
if select:
loss, indices = torch.sort(loss, dim=0, descending=False)
loss = loss[int(loss.size(0) * 0.25):]
loss = torch.mean(loss)
return loss