File size: 15,286 Bytes
feac658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Copyright (c) Facebook, Inc. and its affiliates.
import atexit
import bisect
import gc
import json
import multiprocessing as mp
import time
from collections import deque

import cv2
import numpy as np
import torch

from ape.engine.defaults import DefaultPredictor
from detectron2.data import MetadataCatalog
from detectron2.utils.video_visualizer import VideoVisualizer
from detectron2.utils.visualizer import ColorMode, Visualizer


def filter_instances(instances, metadata):
    # return instances

    keep = []
    keep_classes = []

    sorted_idxs = np.argsort(-instances.scores)
    instances = instances[sorted_idxs]

    for i in range(len(instances)):
        instance = instances[i]
        pred_class = instance.pred_classes
        if pred_class >= len(metadata.thing_classes):
            continue

        keep.append(i)
        keep_classes.append(pred_class)
    return instances[keep]


def cuda_grabcut(img, masks, iter=5, gamma=50, iou_threshold=0.75):
    gc.collect()
    torch.cuda.empty_cache()

    try:
        import grabcut
    except Exception as e:
        print("*" * 60)
        print("fail to import grabCut: ", e)
        print("*" * 60)
        return masks
    GC = grabcut.GrabCut(iter)

    img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)

    tic_0 = time.time()
    for i in range(len(masks)):
        mask = masks[i]
        if mask.sum() > 10 * 10:
            pass
        else:
            continue

        # ----------------------------------------------------------------
        fourmap = np.empty_like(mask, dtype=np.uint8)
        fourmap[:, :] = 64
        fourmap[mask == 0] = 64
        fourmap[mask == 1] = 128

        # Compute segmentation
        tic = time.time()
        seg = GC.estimateSegmentationFromFourmap(img, fourmap, gamma)
        toc = time.time()
        print("Time elapsed in GrabCut segmentation: " + str(toc - tic))
        # ----------------------------------------------------------------

        seg = torch.tensor(seg, dtype=torch.bool)
        iou = (mask & seg).sum() / (mask | seg).sum()
        if iou > iou_threshold:
            masks[i] = seg

        if toc - tic_0 > 10:
            break

    return masks


def opencv_grabcut(img, masks, iter=5):

    for i in range(len(masks)):
        mask = masks[i]

        # ----------------------------------------------------------------
        fourmap = np.empty_like(mask, dtype=np.uint8)
        fourmap[:, :] = cv2.GC_PR_BGD
        # fourmap[mask == 0] = cv2.GC_BGD
        fourmap[mask == 0] = cv2.GC_PR_BGD
        fourmap[mask == 1] = cv2.GC_PR_FGD
        # fourmap[mask == 1] = cv2.GC_FGD

        # Create GrabCut algo
        bgd_model = np.zeros((1, 65), np.float64)
        fgd_model = np.zeros((1, 65), np.float64)
        seg = np.zeros_like(fourmap, dtype=np.uint8)

        # Compute segmentation
        tic = time.time()
        seg, bgd_model, fgd_model = cv2.grabCut(
            img, fourmap, None, bgd_model, fgd_model, iter, cv2.GC_INIT_WITH_MASK
        )
        toc = time.time()
        print("Time elapsed in GrabCut segmentation: " + str(toc - tic))

        seg = np.where((seg == 2) | (seg == 0), 0, 1).astype("bool")

        # ----------------------------------------------------------------

        seg = torch.tensor(seg, dtype=torch.bool)
        iou = (mask & seg).sum() / (mask | seg).sum()
        if iou > 0.75:
            masks[i] = seg

        if i > 10:
            break

    return masks


class VisualizationDemo(object):
    def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False, args=None):
        """
        Args:
            cfg (CfgNode):
            instance_mode (ColorMode):
            parallel (bool): whether to run the model in different processes from visualization.
                Useful since the visualization logic can be slow.
        """
        self.metadata = MetadataCatalog.get(
            "__unused_" + "_".join([d for d in cfg.dataloader.train.dataset.names])
        )
        self.metadata.thing_classes = [
            c
            for d in cfg.dataloader.train.dataset.names
            for c in MetadataCatalog.get(d).get("thing_classes", default=[])
            + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
        ]
        self.metadata.stuff_classes = [
            c
            for d in cfg.dataloader.train.dataset.names
            for c in MetadataCatalog.get(d).get("thing_classes", default=[])
            + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
        ]

        # self.metadata = MetadataCatalog.get(
        #     "__unused_ape_" + "_".join([d for d in cfg.dataloader.train.dataset.names])
        # )
        # self.metadata.thing_classes = [
        #     c
        #     for d in ["coco_2017_train_panoptic_separated"]
        #     for c in MetadataCatalog.get(d).get("thing_classes", default=[])
        #     + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
        # ]
        # self.metadata.stuff_classes = [
        #     c
        #     for d in ["coco_2017_train_panoptic_separated"]
        #     for c in MetadataCatalog.get(d).get("thing_classes", default=[])
        #     + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
        # ]

        self.cpu_device = torch.device("cpu")
        self.instance_mode = instance_mode

        self.parallel = parallel
        if parallel:
            num_gpu = torch.cuda.device_count()
            self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu)
        else:
            self.predictor = DefaultPredictor(cfg)

        print(args)

    def run_on_image(
        self,
        image,
        text_prompt=None,
        mask_prompt=None,
        with_box=True,
        with_mask=True,
        with_sseg=True,
    ):
        """
        Args:
            image (np.ndarray): an image of shape (H, W, C) (in BGR order).
                This is the format used by OpenCV.

        Returns:
            predictions (dict): the output of the model.
            vis_output (VisImage): the visualized image output.
        """
        if text_prompt:
            text_list = [x.strip() for x in text_prompt.split(",")]
            text_list = [x for x in text_list if len(x) > 0]
            metadata = MetadataCatalog.get("__unused_ape_" + text_prompt)
            metadata.thing_classes = text_list
            metadata.stuff_classes = text_list
        else:
            metadata = self.metadata

        vis_output = None
        predictions = self.predictor(image, text_prompt, mask_prompt)

        if "instances" in predictions:
            predictions["instances"] = filter_instances(
                predictions["instances"].to(self.cpu_device), metadata
            )

        # Convert image from OpenCV BGR format to Matplotlib RGB format.
        image = image[:, :, ::-1]
        visualizer = Visualizer(image, metadata, instance_mode=self.instance_mode)
        vis_outputs = []
        if "panoptic_seg" in predictions and with_mask and with_sseg:
            panoptic_seg, segments_info = predictions["panoptic_seg"]
            vis_output = visualizer.draw_panoptic_seg_predictions(
                panoptic_seg.to(self.cpu_device), segments_info
            )
        else:
            if "sem_seg" in predictions and with_sseg:
                # vis_output = visualizer.draw_sem_seg(
                #     predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
                # )

                sem_seg = predictions["sem_seg"].to(self.cpu_device)
                # sem_seg = opencv_grabcut(image, sem_seg, iter=10)
                # sem_seg = cuda_grabcut(image, sem_seg > 0.5, iter=5, gamma=10, iou_threshold=0.1)
                sem_seg = torch.cat((sem_seg, torch.ones_like(sem_seg[0:1, ...]) * 0.1), dim=0)
                sem_seg = sem_seg.argmax(dim=0)
                vis_output = visualizer.draw_sem_seg(sem_seg)
            if "instances" in predictions and (with_box or with_mask):
                instances = predictions["instances"].to(self.cpu_device)

                if not with_box:
                    instances.remove("pred_boxes")
                if not with_mask:
                    instances.remove("pred_masks")

                if with_mask and False:
                    # instances.pred_masks = opencv_grabcut(image, instances.pred_masks, iter=10)
                    instances.pred_masks = cuda_grabcut(
                        image, instances.pred_masks, iter=5, gamma=10, iou_threshold=0.75
                    )

                vis_output = visualizer.draw_instance_predictions(predictions=instances)

                # for i in range(len(instances)):
                #     visualizer = Visualizer(image, metadata, instance_mode=self.instance_mode)
                #     vis_outputs.append(visualizer.draw_instance_predictions(predictions=instances[i]))

            elif "proposals" in predictions:
                visualizer = Visualizer(image, None, instance_mode=self.instance_mode)
                instances = predictions["proposals"].to(self.cpu_device)
                instances.pred_boxes = instances.proposal_boxes
                instances.scores = instances.objectness_logits
                vis_output = visualizer.draw_instance_predictions(predictions=instances)

        return predictions, vis_output, vis_outputs, metadata

    def _frame_from_video(self, video):
        while video.isOpened():
            success, frame = video.read()
            if success:
                yield frame
            else:
                break

    def run_on_video(self, video):
        """
        Visualizes predictions on frames of the input video.

        Args:
            video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be
                either a webcam or a video file.

        Yields:
            ndarray: BGR visualizations of each video frame.
        """
        video_visualizer = VideoVisualizer(self.metadata, self.instance_mode)

        def process_predictions(frame, predictions):
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            if "panoptic_seg" in predictions and False:
                panoptic_seg, segments_info = predictions["panoptic_seg"]
                vis_frame = video_visualizer.draw_panoptic_seg_predictions(
                    frame, panoptic_seg.to(self.cpu_device), segments_info
                )
            elif "instances" in predictions and False:
                predictions = predictions["instances"].to(self.cpu_device)
                vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
            elif "sem_seg" in predictions and False:
                vis_frame = video_visualizer.draw_sem_seg(
                    frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
                )

            if "sem_seg" in predictions:
                vis_frame = video_visualizer.draw_sem_seg(
                    frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
                )
                frame = vis_frame.get_image()

            if "instances" in predictions:
                predictions = predictions["instances"].to(self.cpu_device)
                predictions = filter_instances(predictions, self.metadata)
                vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)

            # Converts Matplotlib RGB format to OpenCV BGR format
            vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR)
            return vis_frame, predictions

        frame_gen = self._frame_from_video(video)
        if self.parallel:
            buffer_size = self.predictor.default_buffer_size

            frame_data = deque()

            for cnt, frame in enumerate(frame_gen):
                frame_data.append(frame)
                self.predictor.put(frame)

                if cnt >= buffer_size:
                    frame = frame_data.popleft()
                    predictions = self.predictor.get()
                    yield process_predictions(frame, predictions)

            while len(frame_data):
                frame = frame_data.popleft()
                predictions = self.predictor.get()
                yield process_predictions(frame, predictions)
        else:
            for frame in frame_gen:
                yield process_predictions(frame, self.predictor(frame))


class AsyncPredictor:
    """
    A predictor that runs the model asynchronously, possibly on >1 GPUs.
    Because rendering the visualization takes considerably amount of time,
    this helps improve throughput a little bit when rendering videos.
    """

    class _StopToken:
        pass

    class _PredictWorker(mp.Process):
        def __init__(self, cfg, task_queue, result_queue):
            self.cfg = cfg
            self.task_queue = task_queue
            self.result_queue = result_queue
            super().__init__()

        def run(self):
            predictor = DefaultPredictor(self.cfg)

            while True:
                task = self.task_queue.get()
                if isinstance(task, AsyncPredictor._StopToken):
                    break
                idx, data = task
                result = predictor(data)
                self.result_queue.put((idx, result))

    def __init__(self, cfg, num_gpus: int = 1):
        """
        Args:
            cfg (CfgNode):
            num_gpus (int): if 0, will run on CPU
        """
        num_workers = max(num_gpus, 1)
        self.task_queue = mp.Queue(maxsize=num_workers * 3)
        self.result_queue = mp.Queue(maxsize=num_workers * 3)
        self.procs = []
        for gpuid in range(max(num_gpus, 1)):
            cfg = cfg.clone()
            cfg.defrost()
            cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
            self.procs.append(
                AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
            )

        self.put_idx = 0
        self.get_idx = 0
        self.result_rank = []
        self.result_data = []

        for p in self.procs:
            p.start()
        atexit.register(self.shutdown)

    def put(self, image):
        self.put_idx += 1
        self.task_queue.put((self.put_idx, image))

    def get(self):
        self.get_idx += 1  # the index needed for this request
        if len(self.result_rank) and self.result_rank[0] == self.get_idx:
            res = self.result_data[0]
            del self.result_data[0], self.result_rank[0]
            return res

        while True:
            # make sure the results are returned in the correct order
            idx, res = self.result_queue.get()
            if idx == self.get_idx:
                return res
            insert = bisect.bisect(self.result_rank, idx)
            self.result_rank.insert(insert, idx)
            self.result_data.insert(insert, res)

    def __len__(self):
        return self.put_idx - self.get_idx

    def __call__(self, image):
        self.put(image)
        return self.get()

    def shutdown(self):
        for _ in self.procs:
            self.task_queue.put(AsyncPredictor._StopToken())

    @property
    def default_buffer_size(self):
        return len(self.procs) * 5