Spaces:
Build error
Build error
File size: 15,286 Bytes
feac658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# Copyright (c) Facebook, Inc. and its affiliates.
import atexit
import bisect
import gc
import json
import multiprocessing as mp
import time
from collections import deque
import cv2
import numpy as np
import torch
from ape.engine.defaults import DefaultPredictor
from detectron2.data import MetadataCatalog
from detectron2.utils.video_visualizer import VideoVisualizer
from detectron2.utils.visualizer import ColorMode, Visualizer
def filter_instances(instances, metadata):
# return instances
keep = []
keep_classes = []
sorted_idxs = np.argsort(-instances.scores)
instances = instances[sorted_idxs]
for i in range(len(instances)):
instance = instances[i]
pred_class = instance.pred_classes
if pred_class >= len(metadata.thing_classes):
continue
keep.append(i)
keep_classes.append(pred_class)
return instances[keep]
def cuda_grabcut(img, masks, iter=5, gamma=50, iou_threshold=0.75):
gc.collect()
torch.cuda.empty_cache()
try:
import grabcut
except Exception as e:
print("*" * 60)
print("fail to import grabCut: ", e)
print("*" * 60)
return masks
GC = grabcut.GrabCut(iter)
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
tic_0 = time.time()
for i in range(len(masks)):
mask = masks[i]
if mask.sum() > 10 * 10:
pass
else:
continue
# ----------------------------------------------------------------
fourmap = np.empty_like(mask, dtype=np.uint8)
fourmap[:, :] = 64
fourmap[mask == 0] = 64
fourmap[mask == 1] = 128
# Compute segmentation
tic = time.time()
seg = GC.estimateSegmentationFromFourmap(img, fourmap, gamma)
toc = time.time()
print("Time elapsed in GrabCut segmentation: " + str(toc - tic))
# ----------------------------------------------------------------
seg = torch.tensor(seg, dtype=torch.bool)
iou = (mask & seg).sum() / (mask | seg).sum()
if iou > iou_threshold:
masks[i] = seg
if toc - tic_0 > 10:
break
return masks
def opencv_grabcut(img, masks, iter=5):
for i in range(len(masks)):
mask = masks[i]
# ----------------------------------------------------------------
fourmap = np.empty_like(mask, dtype=np.uint8)
fourmap[:, :] = cv2.GC_PR_BGD
# fourmap[mask == 0] = cv2.GC_BGD
fourmap[mask == 0] = cv2.GC_PR_BGD
fourmap[mask == 1] = cv2.GC_PR_FGD
# fourmap[mask == 1] = cv2.GC_FGD
# Create GrabCut algo
bgd_model = np.zeros((1, 65), np.float64)
fgd_model = np.zeros((1, 65), np.float64)
seg = np.zeros_like(fourmap, dtype=np.uint8)
# Compute segmentation
tic = time.time()
seg, bgd_model, fgd_model = cv2.grabCut(
img, fourmap, None, bgd_model, fgd_model, iter, cv2.GC_INIT_WITH_MASK
)
toc = time.time()
print("Time elapsed in GrabCut segmentation: " + str(toc - tic))
seg = np.where((seg == 2) | (seg == 0), 0, 1).astype("bool")
# ----------------------------------------------------------------
seg = torch.tensor(seg, dtype=torch.bool)
iou = (mask & seg).sum() / (mask | seg).sum()
if iou > 0.75:
masks[i] = seg
if i > 10:
break
return masks
class VisualizationDemo(object):
def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False, args=None):
"""
Args:
cfg (CfgNode):
instance_mode (ColorMode):
parallel (bool): whether to run the model in different processes from visualization.
Useful since the visualization logic can be slow.
"""
self.metadata = MetadataCatalog.get(
"__unused_" + "_".join([d for d in cfg.dataloader.train.dataset.names])
)
self.metadata.thing_classes = [
c
for d in cfg.dataloader.train.dataset.names
for c in MetadataCatalog.get(d).get("thing_classes", default=[])
+ MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
]
self.metadata.stuff_classes = [
c
for d in cfg.dataloader.train.dataset.names
for c in MetadataCatalog.get(d).get("thing_classes", default=[])
+ MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
]
# self.metadata = MetadataCatalog.get(
# "__unused_ape_" + "_".join([d for d in cfg.dataloader.train.dataset.names])
# )
# self.metadata.thing_classes = [
# c
# for d in ["coco_2017_train_panoptic_separated"]
# for c in MetadataCatalog.get(d).get("thing_classes", default=[])
# + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
# ]
# self.metadata.stuff_classes = [
# c
# for d in ["coco_2017_train_panoptic_separated"]
# for c in MetadataCatalog.get(d).get("thing_classes", default=[])
# + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:]
# ]
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
self.parallel = parallel
if parallel:
num_gpu = torch.cuda.device_count()
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu)
else:
self.predictor = DefaultPredictor(cfg)
print(args)
def run_on_image(
self,
image,
text_prompt=None,
mask_prompt=None,
with_box=True,
with_mask=True,
with_sseg=True,
):
"""
Args:
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
This is the format used by OpenCV.
Returns:
predictions (dict): the output of the model.
vis_output (VisImage): the visualized image output.
"""
if text_prompt:
text_list = [x.strip() for x in text_prompt.split(",")]
text_list = [x for x in text_list if len(x) > 0]
metadata = MetadataCatalog.get("__unused_ape_" + text_prompt)
metadata.thing_classes = text_list
metadata.stuff_classes = text_list
else:
metadata = self.metadata
vis_output = None
predictions = self.predictor(image, text_prompt, mask_prompt)
if "instances" in predictions:
predictions["instances"] = filter_instances(
predictions["instances"].to(self.cpu_device), metadata
)
# Convert image from OpenCV BGR format to Matplotlib RGB format.
image = image[:, :, ::-1]
visualizer = Visualizer(image, metadata, instance_mode=self.instance_mode)
vis_outputs = []
if "panoptic_seg" in predictions and with_mask and with_sseg:
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_output = visualizer.draw_panoptic_seg_predictions(
panoptic_seg.to(self.cpu_device), segments_info
)
else:
if "sem_seg" in predictions and with_sseg:
# vis_output = visualizer.draw_sem_seg(
# predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
# )
sem_seg = predictions["sem_seg"].to(self.cpu_device)
# sem_seg = opencv_grabcut(image, sem_seg, iter=10)
# sem_seg = cuda_grabcut(image, sem_seg > 0.5, iter=5, gamma=10, iou_threshold=0.1)
sem_seg = torch.cat((sem_seg, torch.ones_like(sem_seg[0:1, ...]) * 0.1), dim=0)
sem_seg = sem_seg.argmax(dim=0)
vis_output = visualizer.draw_sem_seg(sem_seg)
if "instances" in predictions and (with_box or with_mask):
instances = predictions["instances"].to(self.cpu_device)
if not with_box:
instances.remove("pred_boxes")
if not with_mask:
instances.remove("pred_masks")
if with_mask and False:
# instances.pred_masks = opencv_grabcut(image, instances.pred_masks, iter=10)
instances.pred_masks = cuda_grabcut(
image, instances.pred_masks, iter=5, gamma=10, iou_threshold=0.75
)
vis_output = visualizer.draw_instance_predictions(predictions=instances)
# for i in range(len(instances)):
# visualizer = Visualizer(image, metadata, instance_mode=self.instance_mode)
# vis_outputs.append(visualizer.draw_instance_predictions(predictions=instances[i]))
elif "proposals" in predictions:
visualizer = Visualizer(image, None, instance_mode=self.instance_mode)
instances = predictions["proposals"].to(self.cpu_device)
instances.pred_boxes = instances.proposal_boxes
instances.scores = instances.objectness_logits
vis_output = visualizer.draw_instance_predictions(predictions=instances)
return predictions, vis_output, vis_outputs, metadata
def _frame_from_video(self, video):
while video.isOpened():
success, frame = video.read()
if success:
yield frame
else:
break
def run_on_video(self, video):
"""
Visualizes predictions on frames of the input video.
Args:
video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be
either a webcam or a video file.
Yields:
ndarray: BGR visualizations of each video frame.
"""
video_visualizer = VideoVisualizer(self.metadata, self.instance_mode)
def process_predictions(frame, predictions):
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if "panoptic_seg" in predictions and False:
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_frame = video_visualizer.draw_panoptic_seg_predictions(
frame, panoptic_seg.to(self.cpu_device), segments_info
)
elif "instances" in predictions and False:
predictions = predictions["instances"].to(self.cpu_device)
vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
elif "sem_seg" in predictions and False:
vis_frame = video_visualizer.draw_sem_seg(
frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
)
if "sem_seg" in predictions:
vis_frame = video_visualizer.draw_sem_seg(
frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
)
frame = vis_frame.get_image()
if "instances" in predictions:
predictions = predictions["instances"].to(self.cpu_device)
predictions = filter_instances(predictions, self.metadata)
vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
# Converts Matplotlib RGB format to OpenCV BGR format
vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR)
return vis_frame, predictions
frame_gen = self._frame_from_video(video)
if self.parallel:
buffer_size = self.predictor.default_buffer_size
frame_data = deque()
for cnt, frame in enumerate(frame_gen):
frame_data.append(frame)
self.predictor.put(frame)
if cnt >= buffer_size:
frame = frame_data.popleft()
predictions = self.predictor.get()
yield process_predictions(frame, predictions)
while len(frame_data):
frame = frame_data.popleft()
predictions = self.predictor.get()
yield process_predictions(frame, predictions)
else:
for frame in frame_gen:
yield process_predictions(frame, self.predictor(frame))
class AsyncPredictor:
"""
A predictor that runs the model asynchronously, possibly on >1 GPUs.
Because rendering the visualization takes considerably amount of time,
this helps improve throughput a little bit when rendering videos.
"""
class _StopToken:
pass
class _PredictWorker(mp.Process):
def __init__(self, cfg, task_queue, result_queue):
self.cfg = cfg
self.task_queue = task_queue
self.result_queue = result_queue
super().__init__()
def run(self):
predictor = DefaultPredictor(self.cfg)
while True:
task = self.task_queue.get()
if isinstance(task, AsyncPredictor._StopToken):
break
idx, data = task
result = predictor(data)
self.result_queue.put((idx, result))
def __init__(self, cfg, num_gpus: int = 1):
"""
Args:
cfg (CfgNode):
num_gpus (int): if 0, will run on CPU
"""
num_workers = max(num_gpus, 1)
self.task_queue = mp.Queue(maxsize=num_workers * 3)
self.result_queue = mp.Queue(maxsize=num_workers * 3)
self.procs = []
for gpuid in range(max(num_gpus, 1)):
cfg = cfg.clone()
cfg.defrost()
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
self.procs.append(
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
)
self.put_idx = 0
self.get_idx = 0
self.result_rank = []
self.result_data = []
for p in self.procs:
p.start()
atexit.register(self.shutdown)
def put(self, image):
self.put_idx += 1
self.task_queue.put((self.put_idx, image))
def get(self):
self.get_idx += 1 # the index needed for this request
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
res = self.result_data[0]
del self.result_data[0], self.result_rank[0]
return res
while True:
# make sure the results are returned in the correct order
idx, res = self.result_queue.get()
if idx == self.get_idx:
return res
insert = bisect.bisect(self.result_rank, idx)
self.result_rank.insert(insert, idx)
self.result_data.insert(insert, res)
def __len__(self):
return self.put_idx - self.get_idx
def __call__(self, image):
self.put(image)
return self.get()
def shutdown(self):
for _ in self.procs:
self.task_queue.put(AsyncPredictor._StopToken())
@property
def default_buffer_size(self):
return len(self.procs) * 5
|