Spaces:
Build error
Build error
File size: 10,185 Bytes
feac658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# Copyright (c) Facebook, Inc. and its affiliates.
import argparse
import glob
import json
import multiprocessing as mp
import os
import tempfile
import time
import warnings
from collections import abc
import cv2
import numpy as np
import tqdm
from detectron2.config import LazyConfig, get_cfg
from detectron2.data.detection_utils import read_image
from detectron2.evaluation.coco_evaluation import instances_to_coco_json
# from detectron2.projects.deeplab import add_deeplab_config
# from detectron2.projects.panoptic_deeplab import add_panoptic_deeplab_config
from detectron2.utils.logger import setup_logger
from predictor_lazy import VisualizationDemo
# constants
WINDOW_NAME = "APE"
def setup_cfg(args):
# load config from file and command-line arguments
cfg = LazyConfig.load(args.config_file)
cfg = LazyConfig.apply_overrides(cfg, args.opts)
if "output_dir" in cfg.model:
cfg.model.output_dir = cfg.train.output_dir
if "model_vision" in cfg.model and "output_dir" in cfg.model.model_vision:
cfg.model.model_vision.output_dir = cfg.train.output_dir
if "train" in cfg.dataloader:
if isinstance(cfg.dataloader.train, abc.MutableSequence):
for i in range(len(cfg.dataloader.train)):
if "output_dir" in cfg.dataloader.train[i].mapper:
cfg.dataloader.train[i].mapper.output_dir = cfg.train.output_dir
else:
if "output_dir" in cfg.dataloader.train.mapper:
cfg.dataloader.train.mapper.output_dir = cfg.train.output_dir
if "model_vision" in cfg.model:
cfg.model.model_vision.test_score_thresh = args.confidence_threshold
else:
cfg.model.test_score_thresh = args.confidence_threshold
# default_setup(cfg, args)
setup_logger(name="ape")
setup_logger(name="timm")
return cfg
def get_parser():
parser = argparse.ArgumentParser(description="Detectron2 demo for builtin configs")
parser.add_argument(
"--config-file",
default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--webcam", action="store_true", help="Take inputs from webcam.")
parser.add_argument("--video-input", help="Path to video file.")
parser.add_argument(
"--input",
nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--output",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
)
parser.add_argument(
"--confidence-threshold",
type=float,
default=0.5,
help="Minimum score for instance predictions to be shown",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=[],
nargs=argparse.REMAINDER,
)
parser.add_argument("--text-prompt", default=None)
parser.add_argument("--with-box", action="store_true", help="show box of instance")
parser.add_argument("--with-mask", action="store_true", help="show mask of instance")
parser.add_argument("--with-sseg", action="store_true", help="show mask of class")
return parser
def test_opencv_video_format(codec, file_ext):
with tempfile.TemporaryDirectory(prefix="video_format_test") as dir:
filename = os.path.join(dir, "test_file" + file_ext)
writer = cv2.VideoWriter(
filename=filename,
fourcc=cv2.VideoWriter_fourcc(*codec),
fps=float(30),
frameSize=(10, 10),
isColor=True,
)
[writer.write(np.zeros((10, 10, 3), np.uint8)) for _ in range(30)]
writer.release()
if os.path.isfile(filename):
return True
return False
if __name__ == "__main__":
mp.set_start_method("spawn", force=True)
args = get_parser().parse_args()
setup_logger(name="fvcore")
setup_logger(name="ape")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup_cfg(args)
if args.video_input:
demo = VisualizationDemo(cfg, parallel=True, args=args)
else:
demo = VisualizationDemo(cfg, args=args)
if args.input:
if len(args.input) == 1:
args.input = glob.glob(os.path.expanduser(args.input[0]), recursive=True)
assert args.input, "The input path(s) was not found"
for path in tqdm.tqdm(args.input, disable=not args.output):
# use PIL, to be consistent with evaluation
try:
img = read_image(path, format="BGR")
except Exception as e:
print("*" * 60)
print("fail to open image: ", e)
print("*" * 60)
continue
start_time = time.time()
predictions, visualized_output, visualized_outputs, metadata = demo.run_on_image(
img,
text_prompt=args.text_prompt,
with_box=args.with_box,
with_mask=args.with_mask,
with_sseg=args.with_sseg,
)
logger.info(
"{}: {} in {:.2f}s".format(
path,
"detected {} instances".format(len(predictions["instances"]))
if "instances" in predictions
else "finished",
time.time() - start_time,
)
)
if args.output:
if os.path.isdir(args.output):
assert os.path.isdir(args.output), args.output
out_filename = os.path.join(args.output, os.path.basename(path))
else:
assert len(args.input) == 1, "Please specify a directory with args.output"
out_filename = args.output
out_filename = out_filename.replace(".webp", ".png")
out_filename = out_filename.replace(".crdownload", ".png")
out_filename = out_filename.replace(".jfif", ".png")
visualized_output.save(out_filename)
for i in range(len(visualized_outputs)):
out_filename = (
os.path.join(args.output, os.path.basename(path)) + "." + str(i) + ".png"
)
visualized_outputs[i].save(out_filename)
# import pickle
# with open(out_filename + ".pkl", "wb") as outp:
# pickle.dump(predictions, outp, pickle.HIGHEST_PROTOCOL)
if "instances" in predictions:
results = instances_to_coco_json(
predictions["instances"].to(demo.cpu_device), path
)
for result in results:
result["category_name"] = metadata.thing_classes[result["category_id"]]
result["image_name"] = result["image_id"]
with open(out_filename + ".json", "w") as outp:
json.dump(results, outp)
else:
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.imshow(WINDOW_NAME, visualized_output.get_image()[:, :, ::-1])
if cv2.waitKey(0) == 27:
break # esc to quit
elif args.webcam:
assert args.input is None, "Cannot have both --input and --webcam!"
assert args.output is None, "output not yet supported with --webcam!"
cam = cv2.VideoCapture(0)
for vis in tqdm.tqdm(demo.run_on_video(cam)):
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.imshow(WINDOW_NAME, vis)
if cv2.waitKey(1) == 27:
break # esc to quit
cam.release()
cv2.destroyAllWindows()
elif args.video_input:
video = cv2.VideoCapture(args.video_input)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frames_per_second = video.get(cv2.CAP_PROP_FPS)
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
basename = os.path.basename(args.video_input)
codec, file_ext = (
("x264", ".mkv") if test_opencv_video_format("x264", ".mkv") else ("mp4v", ".mp4")
)
codec, file_ext = "mp4v", ".mp4"
if codec == ".mp4v":
warnings.warn("x264 codec not available, switching to mp4v")
if args.output:
if os.path.isdir(args.output):
output_fname = os.path.join(args.output, basename)
output_fname = os.path.splitext(output_fname)[0] + file_ext
else:
output_fname = args.output
assert not os.path.isfile(output_fname), output_fname
output_file = cv2.VideoWriter(
filename=output_fname,
# some installation of opencv may not support x264 (due to its license),
# you can try other format (e.g. MPEG)
fourcc=cv2.VideoWriter_fourcc(*codec),
fps=float(frames_per_second),
frameSize=(width, height),
isColor=True,
)
# i = 0
assert os.path.isfile(args.video_input)
for vis_frame, predictions in tqdm.tqdm(demo.run_on_video(video), total=num_frames):
if args.output:
output_file.write(vis_frame)
# import pickle
# with open(output_fname + "." + str(i) + ".pkl", "wb") as outp:
# pickle.dump(predictions, outp, pickle.HIGHEST_PROTOCOL)
# i += 1
else:
cv2.namedWindow(basename, cv2.WINDOW_NORMAL)
cv2.imshow(basename, vis_frame)
if cv2.waitKey(1) == 27:
break # esc to quit
video.release()
if args.output:
output_file.release()
else:
cv2.destroyAllWindows()
|