File size: 26,539 Bytes
f14200d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2474e74
f14200d
 
 
 
 
 
 
 
 
 
bc1676d
 
f14200d
 
 
 
2474e74
f14200d
 
 
 
 
2474e74
f14200d
 
 
 
 
 
 
 
 
 
 
 
 
2474e74
 
 
f14200d
 
 
 
2474e74
 
 
 
 
f14200d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2474e74
bc1676d
 
2474e74
 
 
bc1676d
 
 
 
 
f14200d
bc1676d
f14200d
 
 
bc1676d
f14200d
 
 
bc1676d
 
 
 
 
 
 
 
 
 
 
 
2474e74
bc1676d
 
2474e74
 
bc1676d
2474e74
bc1676d
 
f14200d
2474e74
 
f14200d
 
 
bc1676d
f14200d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2474e74
 
bc1676d
 
2474e74
f14200d
 
 
 
 
 
 
 
 
 
 
bc1676d
f14200d
 
2474e74
 
f14200d
 
 
 
 
 
 
 
 
 
 
 
bc1676d
 
 
 
2474e74
 
bc1676d
f14200d
 
 
 
 
 
 
 
 
 
 
 
 
2474e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f14200d
2474e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1676d
2474e74
bc1676d
 
 
 
 
2474e74
 
f14200d
 
 
bc1676d
 
f14200d
 
 
 
 
 
 
 
2474e74
 
bc1676d
 
f14200d
bc1676d
f14200d
bc1676d
 
f14200d
 
 
 
 
 
 
2474e74
 
f14200d
2474e74
f14200d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2474e74
bc1676d
2474e74
bc1676d
f14200d
 
 
 
 
2474e74
f14200d
 
 
 
 
 
2474e74
f14200d
 
 
 
 
 
 
 
 
bc1676d
 
f14200d
bc1676d
 
 
 
 
 
 
 
2474e74
 
bc1676d
f14200d
 
 
 
 
 
 
bc1676d
f14200d
 
bc1676d
f14200d
bc1676d
 
2474e74
 
bc1676d
 
2474e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f14200d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# Edit Anything trained with Stable Diffusion + ControlNet + SAM  + BLIP2
from torchvision.utils import save_image
from PIL import Image
from pytorch_lightning import seed_everything
import subprocess
from collections import OrderedDict
import re
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import os
import requests
from io import BytesIO
from annotator.util import resize_image, HWC3, resize_points

import torch
from safetensors.torch import load_file
from collections import defaultdict
from diffusers import StableDiffusionControlNetPipeline
from diffusers import ControlNetModel, UniPCMultistepScheduler
from utils.stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
# need the latest transformers
# pip install git+https://github.com/huggingface/transformers.git
from transformers import AutoProcessor, Blip2ForConditionalGeneration
from diffusers import ControlNetModel, DiffusionPipeline
import PIL.Image

# Segment-Anything init.
# pip install git+https://github.com/facebookresearch/segment-anything.git
try:
    from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
except ImportError:
    print('segment_anything not installed')
    result = subprocess.run(
        ['pip', 'install', 'git+https://github.com/facebookresearch/segment-anything.git'], check=True)
    print(f'Install segment_anything {result}')
    from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
if not os.path.exists('./models/sam_vit_h_4b8939.pth'):
    result = subprocess.run(
        ['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth', '-P', 'models'], check=True)
    print(f'Download sam_vit_h_4b8939.pth {result}')

device = "cuda" if torch.cuda.is_available() else "cpu"

config_dict = OrderedDict([
    ('LAION Pretrained(v0-4)-SD15', 'shgao/edit-anything-v0-4-sd15'),
    ('LAION Pretrained(v0-4)-SD21', 'shgao/edit-anything-v0-4-sd21'),
])


def init_sam_model(sam_generator=None, mask_predictor=None):
    if sam_generator is not None and mask_predictor is not None:
        return sam_generator, mask_predictor
    sam_checkpoint = "models/sam_vit_h_4b8939.pth"
    model_type = "default"
    sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
    sam.to(device=device)
    sam_generator = SamAutomaticMaskGenerator(
        sam) if sam_generator is None else sam_generator
    mask_predictor = SamPredictor(
        sam) if mask_predictor is None else mask_predictor
    return sam_generator, mask_predictor


def init_blip_processor():
    blip_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
    return blip_processor


def init_blip_model():
    blip_model = Blip2ForConditionalGeneration.from_pretrained(
        "Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto")
    return blip_model


def get_pipeline_embeds(pipeline, prompt, negative_prompt, device):
    # https://github.com/huggingface/diffusers/issues/2136
    """ Get pipeline embeds for prompts bigger than the maxlength of the pipe
    :param pipeline:
    :param prompt:
    :param negative_prompt:
    :param device:
    :return:
    """
    max_length = pipeline.tokenizer.model_max_length

    # simple way to determine length of tokens
    count_prompt = len(re.split(r', ', prompt))
    count_negative_prompt = len(re.split(r', ', negative_prompt))

    # create the tensor based on which prompt is longer
    if count_prompt >= count_negative_prompt:
        input_ids = pipeline.tokenizer(
            prompt, return_tensors="pt", truncation=False).input_ids.to(device)
        shape_max_length = input_ids.shape[-1]
        negative_ids = pipeline.tokenizer(negative_prompt, truncation=False, padding="max_length",
                                          max_length=shape_max_length, return_tensors="pt").input_ids.to(device)
    else:
        negative_ids = pipeline.tokenizer(
            negative_prompt, return_tensors="pt", truncation=False).input_ids.to(device)
        shape_max_length = negative_ids.shape[-1]
        input_ids = pipeline.tokenizer(prompt, return_tensors="pt", truncation=False, padding="max_length",
                                       max_length=shape_max_length).input_ids.to(device)

    concat_embeds = []
    neg_embeds = []
    for i in range(0, shape_max_length, max_length):
        concat_embeds.append(pipeline.text_encoder(
            input_ids[:, i: i + max_length])[0])
        neg_embeds.append(pipeline.text_encoder(
            negative_ids[:, i: i + max_length])[0])

    return torch.cat(concat_embeds, dim=1), torch.cat(neg_embeds, dim=1)


def load_lora_weights(pipeline, checkpoint_path, multiplier, device, dtype):
    LORA_PREFIX_UNET = "lora_unet"
    LORA_PREFIX_TEXT_ENCODER = "lora_te"
    # load LoRA weight from .safetensors
    if isinstance(checkpoint_path, str):

        state_dict = load_file(checkpoint_path, device=device)

        updates = defaultdict(dict)
        for key, value in state_dict.items():
            # it is suggested to print out the key, it usually will be something like below
            # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"

            layer, elem = key.split('.', 1)
            updates[layer][elem] = value

        # directly update weight in diffusers model
        for layer, elems in updates.items():

            if "text" in layer:
                layer_infos = layer.split(
                    LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
                curr_layer = pipeline.text_encoder
            else:
                layer_infos = layer.split(
                    LORA_PREFIX_UNET + "_")[-1].split("_")
                curr_layer = pipeline.unet

            # find the target layer
            temp_name = layer_infos.pop(0)
            while len(layer_infos) > -1:
                try:
                    curr_layer = curr_layer.__getattr__(temp_name)
                    if len(layer_infos) > 0:
                        temp_name = layer_infos.pop(0)
                    elif len(layer_infos) == 0:
                        break
                except Exception:
                    if len(temp_name) > 0:
                        temp_name += "_" + layer_infos.pop(0)
                    else:
                        temp_name = layer_infos.pop(0)

            # get elements for this layer
            weight_up = elems['lora_up.weight'].to(dtype)
            weight_down = elems['lora_down.weight'].to(dtype)
            alpha = elems['alpha']
            if alpha:
                alpha = alpha.item() / weight_up.shape[1]
            else:
                alpha = 1.0

            # update weight
            if len(weight_up.shape) == 4:
                curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(
                    3).squeeze(2), weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
            else:
                curr_layer.weight.data += multiplier * \
                    alpha * torch.mm(weight_up, weight_down)
    else:
        for ckptpath in checkpoint_path:
            state_dict = load_file(ckptpath, device=device)

            updates = defaultdict(dict)
            for key, value in state_dict.items():
                # it is suggested to print out the key, it usually will be something like below
                # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"

                layer, elem = key.split('.', 1)
                updates[layer][elem] = value

            # directly update weight in diffusers model
            for layer, elems in updates.items():
                if "text" in layer:
                    layer_infos = layer.split(
                        LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
                    curr_layer = pipeline.text_encoder
                else:
                    layer_infos = layer.split(
                        LORA_PREFIX_UNET + "_")[-1].split("_")
                    curr_layer = pipeline.unet

                # find the target layer
                temp_name = layer_infos.pop(0)
                while len(layer_infos) > -1:
                    try:
                        curr_layer = curr_layer.__getattr__(temp_name)
                        if len(layer_infos) > 0:
                            temp_name = layer_infos.pop(0)
                        elif len(layer_infos) == 0:
                            break
                    except Exception:
                        if len(temp_name) > 0:
                            temp_name += "_" + layer_infos.pop(0)
                        else:
                            temp_name = layer_infos.pop(0)

                # get elements for this layer
                weight_up = elems['lora_up.weight'].to(dtype)
                weight_down = elems['lora_down.weight'].to(dtype)
                alpha = elems['alpha']
                if alpha:
                    alpha = alpha.item() / weight_up.shape[1]
                else:
                    alpha = 1.0

                # update weight
                if len(weight_up.shape) == 4:
                    curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(
                        3).squeeze(2), weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
                else:
                    curr_layer.weight.data += multiplier * \
                        alpha * torch.mm(weight_up, weight_down)
    return pipeline


def make_inpaint_condition(image, image_mask):
    # image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image = image / 255.0
    print("img", image.max(), image.min(), image_mask.max(), image_mask.min())
    # image_mask = np.array(image_mask.convert("L"))
    assert image.shape[0:1] == image_mask.shape[0:
                                                1], "image and image_mask must have the same image size"
    image[image_mask > 128] = -1.0  # set as masked pixel
    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return image


def obtain_generation_model(base_model_path, lora_model_path, controlnet_path, generation_only=False, extra_inpaint=True, lora_weight=1.0):
    controlnet = []
    controlnet.append(ControlNetModel.from_pretrained(
        controlnet_path, torch_dtype=torch.float16))  # sam control
    if (not generation_only) and extra_inpaint:  # inpainting control
        print("Warning: ControlNet based inpainting model only support SD1.5 for now.")
        controlnet.append(
            ControlNetModel.from_pretrained(
                'lllyasviel/control_v11p_sd15_inpaint', torch_dtype=torch.float16)  # inpainting controlnet
        )

    if generation_only:
        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            base_model_path, controlnet=controlnet, torch_dtype=torch.float16, safety_checker=None
        )
    else:
        pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
            base_model_path, controlnet=controlnet, torch_dtype=torch.float16, safety_checker=None
        )
    if lora_model_path is not None:
        pipe = load_lora_weights(
            pipe, [lora_model_path], lora_weight, 'cpu', torch.float32)
    # speed up diffusion process with faster scheduler and memory optimization
    pipe.scheduler = UniPCMultistepScheduler.from_config(
        pipe.scheduler.config)
    # remove following line if xformers is not installed
    pipe.enable_xformers_memory_efficient_attention()

    pipe.enable_model_cpu_offload()
    return pipe


def obtain_tile_model(base_model_path, lora_model_path, lora_weight=1.0):
    controlnet = ControlNetModel.from_pretrained(
        'lllyasviel/control_v11f1e_sd15_tile', torch_dtype=torch.float16)  # tile controlnet
    if base_model_path == 'runwayml/stable-diffusion-v1-5' or base_model_path == 'stabilityai/stable-diffusion-2-inpainting':
        print("base_model_path", base_model_path)
        pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, safety_checker=None
        )
    else:
        pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
            base_model_path, controlnet=controlnet, torch_dtype=torch.float16, safety_checker=None
        )
    if lora_model_path is not None:
        pipe = load_lora_weights(
            pipe, [lora_model_path], lora_weight, 'cpu', torch.float32)
    # speed up diffusion process with faster scheduler and memory optimization
    pipe.scheduler = UniPCMultistepScheduler.from_config(
        pipe.scheduler.config)
    # remove following line if xformers is not installed
    pipe.enable_xformers_memory_efficient_attention()

    pipe.enable_model_cpu_offload()
    return pipe


def show_anns(anns):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
    full_img = None

    # for ann in sorted_anns:
    for i in range(len(sorted_anns)):
        ann = anns[i]
        m = ann['segmentation']
        if full_img is None:
            full_img = np.zeros((m.shape[0], m.shape[1], 3))
            map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
        map[m != 0] = i + 1
        color_mask = np.random.random((1, 3)).tolist()[0]
        full_img[m != 0] = color_mask
    full_img = full_img*255
    # anno encoding from https://github.com/LUSSeg/ImageNet-S
    res = np.zeros((map.shape[0], map.shape[1], 3))
    res[:, :, 0] = map % 256
    res[:, :, 1] = map // 256
    res.astype(np.float32)
    full_img = Image.fromarray(np.uint8(full_img))
    return full_img, res


class EditAnythingLoraModel:
    def __init__(self,
                 base_model_path='../chilloutmix_NiPrunedFp32Fix',
                 lora_model_path='../40806/mix4', use_blip=True,
                 blip_processor=None,
                 blip_model=None,
                 sam_generator=None,
                 controlmodel_name='LAION Pretrained(v0-4)-SD15',
                 # used when the base model is not an inpainting model.
                 extra_inpaint=True,
                 tile_model=None,
                 lora_weight=1.0,
                 mask_predictor=None
                 ):
        self.device = device
        self.use_blip = use_blip

        # Diffusion init using diffusers.
        self.default_controlnet_path = config_dict[controlmodel_name]
        self.base_model_path = base_model_path
        self.lora_model_path = lora_model_path
        self.defalut_enable_all_generate = False
        self.extra_inpaint = extra_inpaint
        self.pipe = obtain_generation_model(
            base_model_path, lora_model_path, self.default_controlnet_path, generation_only=False, extra_inpaint=extra_inpaint, lora_weight=lora_weight)

        # Segment-Anything init.
        self.sam_generator, self.mask_predictor = init_sam_model(
            sam_generator, mask_predictor)
        # BLIP2 init.
        if use_blip:
            if blip_processor is not None:
                self.blip_processor = blip_processor
            else:
                self.blip_processor = init_blip_processor()

            if blip_model is not None:
                self.blip_model = blip_model
            else:
                self.blip_model = init_blip_model()

        # tile model init.
        if tile_model is not None:
            self.tile_pipe = tile_model
        else:
            self.tile_pipe = obtain_tile_model(
                base_model_path, lora_model_path, lora_weight=lora_weight)

    def get_blip2_text(self, image):
        inputs = self.blip_processor(image, return_tensors="pt").to(
            self.device, torch.float16)
        generated_ids = self.blip_model.generate(**inputs, max_new_tokens=50)
        generated_text = self.blip_processor.batch_decode(
            generated_ids, skip_special_tokens=True)[0].strip()
        return generated_text

    def get_sam_control(self, image):
        masks = self.sam_generator.generate(image)
        full_img, res = show_anns(masks)
        return full_img, res

    def get_click_mask(self, image, clicked_points):
        self.mask_predictor.set_image(image)
        # Separate the points and labels
        points, labels = zip(*[(point[:2], point[2])
                             for point in clicked_points])

        # Convert the points and labels to numpy arrays
        input_point = np.array(points)
        input_label = np.array(labels)

        masks, _, _ = self.mask_predictor.predict(
            point_coords=input_point,
            point_labels=input_label,
            multimask_output=False,
        )

        return masks

    @torch.inference_mode()
    def process_image_click(self, original_image: gr.Image,
                            point_prompt: gr.Radio,
                            clicked_points: gr.State,
                            image_resolution,
                            evt: gr.SelectData):
        # Get the clicked coordinates
        clicked_coords = evt.index
        x, y = clicked_coords
        label = point_prompt
        lab = 1 if label == "Foreground Point" else 0
        clicked_points.append((x, y, lab))

        input_image = np.array(original_image, dtype=np.uint8)
        H, W, C = input_image.shape
        input_image = HWC3(input_image)
        img = resize_image(input_image, image_resolution)

        # Update the clicked_points
        resized_points = resize_points(clicked_points,
                                       input_image.shape,
                                       image_resolution)
        mask_click_np = self.get_click_mask(img, resized_points)

        # Convert mask_click_np to HWC format
        mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0

        mask_image = HWC3(mask_click_np.astype(np.uint8))
        mask_image = cv2.resize(
            mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
        # mask_image = Image.fromarray(mask_image_tmp)

        # Draw circles for all clicked points
        edited_image = input_image
        for x, y, lab in clicked_points:
            # Set the circle color based on the label
            color = (255, 0, 0) if lab == 1 else (0, 0, 255)

            # Draw the circle
            edited_image = cv2.circle(edited_image, (x, y), 20, color, -1)

        # Set the opacity for the mask_image and edited_image
        opacity_mask = 0.75
        opacity_edited = 1.0

        # Combine the edited_image and the mask_image using cv2.addWeighted()
        overlay_image = cv2.addWeighted(
            edited_image, opacity_edited,
            (mask_image * np.array([0/255, 255/255, 0/255])).astype(np.uint8),
            opacity_mask, 0
        )

        return Image.fromarray(overlay_image), clicked_points, Image.fromarray(mask_image)

    @torch.inference_mode()
    def process(self, source_image, enable_all_generate, mask_image,
                control_scale,
                enable_auto_prompt, a_prompt, n_prompt,
                num_samples, image_resolution, detect_resolution,
                ddim_steps, guess_mode, strength, scale, seed, eta,
                enable_tile=True, refine_alignment_ratio=None, refine_image_resolution=None, condition_model=None):

        if condition_model is None:
            this_controlnet_path = self.default_controlnet_path
        else:
            this_controlnet_path = config_dict[condition_model]
        input_image = source_image["image"] if isinstance(
            source_image, dict) else np.array(source_image, dtype=np.uint8)
        if mask_image is None:
            if enable_all_generate != self.defalut_enable_all_generate:
                self.pipe = obtain_generation_model(
                    self.base_model_path, self.lora_model_path, this_controlnet_path, enable_all_generate, self.extra_inpaint)

                self.defalut_enable_all_generate = enable_all_generate
            if enable_all_generate:
                print("source_image",
                      source_image["mask"].shape, input_image.shape,)
                mask_image = np.ones(
                    (input_image.shape[0], input_image.shape[1], 3))*255
            else:
                mask_image = source_image["mask"]
        else:
            mask_image = np.array(mask_image, dtype=np.uint8)
        if self.default_controlnet_path != this_controlnet_path:
            print("To Use:", this_controlnet_path,
                  "Current:", self.default_controlnet_path)
            print("Change condition model to:", this_controlnet_path)
            self.pipe = obtain_generation_model(
                self.base_model_path, self.lora_model_path, this_controlnet_path, enable_all_generate, self.extra_inpaint)
            self.default_controlnet_path = this_controlnet_path
            torch.cuda.empty_cache()

        with torch.no_grad():
            if self.use_blip and enable_auto_prompt:
                print("Generating text:")
                blip2_prompt = self.get_blip2_text(input_image)
                print("Generated text:", blip2_prompt)
                if len(a_prompt) > 0:
                    a_prompt = blip2_prompt + ',' + a_prompt
                else:
                    a_prompt = blip2_prompt

            input_image = HWC3(input_image)

            img = resize_image(input_image, image_resolution)
            H, W, C = img.shape

            print("Generating SAM seg:")
            # the default SAM model is trained with 1024 size.
            full_segmask, detected_map = self.get_sam_control(
                resize_image(input_image, detect_resolution))

            detected_map = HWC3(detected_map.astype(np.uint8))
            detected_map = cv2.resize(
                detected_map, (W, H), interpolation=cv2.INTER_LINEAR)

            control = torch.from_numpy(
                detected_map.copy()).float().cuda()
            control = torch.stack([control for _ in range(num_samples)], dim=0)
            control = einops.rearrange(control, 'b h w c -> b c h w').clone()

            mask_imag_ori = HWC3(mask_image.astype(np.uint8))
            mask_image_tmp = cv2.resize(
                mask_imag_ori, (W, H), interpolation=cv2.INTER_LINEAR)
            mask_image = Image.fromarray(mask_image_tmp)

            if seed == -1:
                seed = random.randint(0, 65535)
            seed_everything(seed)
            generator = torch.manual_seed(seed)
            postive_prompt = a_prompt
            negative_prompt = n_prompt
            prompt_embeds, negative_prompt_embeds = get_pipeline_embeds(
                self.pipe, postive_prompt, negative_prompt, "cuda")
            prompt_embeds = torch.cat([prompt_embeds] * num_samples, dim=0)
            negative_prompt_embeds = torch.cat(
                [negative_prompt_embeds] * num_samples, dim=0)
            if enable_all_generate and not self.extra_inpaint:
                self.pipe.safety_checker = lambda images, clip_input: (
                    images, False)
                x_samples = self.pipe(
                    prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
                    num_images_per_prompt=num_samples,
                    num_inference_steps=ddim_steps,
                    generator=generator,
                    height=H,
                    width=W,
                    image=[control.type(torch.float16)],
                    controlnet_conditioning_scale=[float(control_scale)],
                ).images
            else:
                multi_condition_image = []
                multi_condition_scale = []
                multi_condition_image.append(control.type(torch.float16))
                multi_condition_scale.append(float(control_scale))
                if self.extra_inpaint:
                    inpaint_image = make_inpaint_condition(img, mask_image_tmp)
                    print(inpaint_image.shape)
                    multi_condition_image.append(
                        inpaint_image.type(torch.float16))
                    multi_condition_scale.append(1.0)
                x_samples = self.pipe(
                    image=img,
                    mask_image=mask_image,
                    prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
                    num_images_per_prompt=num_samples,
                    num_inference_steps=ddim_steps,
                    generator=generator,
                    controlnet_conditioning_image=multi_condition_image,
                    height=H,
                    width=W,
                    controlnet_conditioning_scale=multi_condition_scale,
                ).images
            results = [x_samples[i] for i in range(num_samples)]

            results_tile = []
            if enable_tile:
                prompt_embeds, negative_prompt_embeds = get_pipeline_embeds(
                    self.tile_pipe, postive_prompt, negative_prompt, "cuda")
                for i in range(num_samples):
                    img_tile = PIL.Image.fromarray(resize_image(
                        np.array(x_samples[i]), refine_image_resolution))
                    if i == 0:
                        mask_image_tile = cv2.resize(
                            mask_imag_ori, (img_tile.size[0], img_tile.size[1]), interpolation=cv2.INTER_LINEAR)
                        mask_image_tile = Image.fromarray(mask_image_tile)
                    x_samples_tile = self.tile_pipe(
                        image=img_tile,
                        mask_image=mask_image_tile,
                        prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
                        num_images_per_prompt=1,
                        num_inference_steps=ddim_steps,
                        generator=generator,
                        controlnet_conditioning_image=img_tile,
                        height=img_tile.size[1],
                        width=img_tile.size[0],
                        controlnet_conditioning_scale=1.0,
                        alignment_ratio=refine_alignment_ratio,
                    ).images
                    results_tile += x_samples_tile

        return results_tile, results, [full_segmask, mask_image], postive_prompt

    def download_image(url):
        response = requests.get(url)
        return Image.open(BytesIO(response.content)).convert("RGB")