Spaces:
Runtime error
Runtime error
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2 | |
# pip install mmcv | |
from torchvision.utils import save_image | |
from PIL import Image | |
import subprocess | |
from collections import OrderedDict | |
import numpy as np | |
import cv2 | |
import textwrap | |
import torch | |
import os | |
from annotator.util import resize_image, HWC3 | |
import mmcv | |
import random | |
# device = "cuda" if torch.cuda.is_available() else "cpu" # > 15GB GPU memory required | |
device = "cpu" | |
use_blip = True | |
use_gradio = True | |
if device == 'cpu': | |
data_type = torch.float32 | |
else: | |
data_type = torch.float16 | |
# Diffusion init using diffusers. | |
# diffusers==0.14.0 required. | |
from diffusers.utils import load_image | |
base_model_path = "stabilityai/stable-diffusion-2-inpainting" | |
config_dict = OrderedDict([('SAM Pretrained(v0-1): Good Natural Sense', 'shgao/edit-anything-v0-1-1'), | |
('LAION Pretrained(v0-3): Good Face', 'shgao/edit-anything-v0-3'), | |
('SD Inpainting: Not keep position', 'stabilityai/stable-diffusion-2-inpainting') | |
]) | |
# Segment-Anything init. | |
# pip install git+https://github.com/facebookresearch/segment-anything.git | |
try: | |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator | |
except ImportError: | |
print('segment_anything not installed') | |
result = subprocess.run(['pip', 'install', 'git+https://github.com/facebookresearch/segment-anything.git'], check=True) | |
print(f'Install segment_anything {result}') | |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator | |
if not os.path.exists('./models/sam_vit_h_4b8939.pth'): | |
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth', '-P', 'models'], check=True) | |
print(f'Download sam_vit_h_4b8939.pth {result}') | |
sam_checkpoint = "models/sam_vit_h_4b8939.pth" | |
model_type = "default" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
sam.to(device=device) | |
mask_generator = SamAutomaticMaskGenerator(sam) | |
# BLIP2 init. | |
if use_blip: | |
# need the latest transformers | |
# pip install git+https://github.com/huggingface/transformers.git | |
from transformers import AutoProcessor, Blip2ForConditionalGeneration | |
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
blip_model = Blip2ForConditionalGeneration.from_pretrained( | |
"Salesforce/blip2-opt-2.7b", torch_dtype=data_type) | |
def region_classify_w_blip2(image): | |
inputs = processor(image, return_tensors="pt").to(device, data_type) | |
generated_ids = blip_model.generate(**inputs, max_new_tokens=15) | |
generated_text = processor.batch_decode( | |
generated_ids, skip_special_tokens=True)[0].strip() | |
return generated_text | |
def region_level_semantic_api(image, topk=5): | |
""" | |
rank regions by area, and classify each region with blip2 | |
Args: | |
image: numpy array | |
topk: int | |
Returns: | |
topk_region_w_class_label: list of dict with key 'class_label' | |
""" | |
topk_region_w_class_label = [] | |
anns = mask_generator.generate(image) | |
if len(anns) == 0: | |
return [] | |
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) | |
for i in range(min(topk, len(sorted_anns))): | |
ann = anns[i] | |
m = ann['segmentation'] | |
m_3c = m[:,:, np.newaxis] | |
m_3c = np.concatenate((m_3c,m_3c,m_3c), axis=2) | |
bbox = ann['bbox'] | |
region = mmcv.imcrop(image*m_3c, np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]), scale=1) | |
region_class_label = region_classify_w_blip2(region) | |
ann['class_label'] = region_class_label | |
print(ann['class_label'], str(bbox)) | |
topk_region_w_class_label.append(ann) | |
return topk_region_w_class_label | |
def show_semantic_image_label(anns): | |
""" | |
show semantic image label for each region | |
Args: | |
anns: list of dict with key 'class_label' | |
Returns: | |
full_img: numpy array | |
""" | |
full_img = None | |
# generate mask image | |
for i in range(len(anns)): | |
m = anns[i]['segmentation'] | |
if full_img is None: | |
full_img = np.zeros((m.shape[0], m.shape[1], 3)) | |
color_mask = np.random.random((1, 3)).tolist()[0] | |
full_img[m != 0] = color_mask | |
full_img = full_img*255 | |
# add text on this mask image | |
for i in range(len(anns)): | |
m = anns[i]['segmentation'] | |
class_label = anns[i]['class_label'] | |
# add text to region | |
# Calculate the centroid of the region to place the text | |
y, x = np.where(m != 0) | |
x_center, y_center = int(np.mean(x)), int(np.mean(y)) | |
# Split the text into multiple lines | |
max_width = 20 # Adjust this value based on your preferred maximum width | |
wrapped_text = textwrap.wrap(class_label, width=max_width) | |
# Add text to region | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
font_scale = 1.2 | |
font_thickness = 2 | |
font_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) # red | |
line_spacing = 40 # Adjust this value based on your preferred line | |
for idx, line in enumerate(wrapped_text): | |
y_offset = y_center - (len(wrapped_text) - 1) * line_spacing // 2 + idx * line_spacing | |
text_size = cv2.getTextSize(line, font, font_scale, font_thickness)[0] | |
x_offset = x_center - text_size[0] // 2 | |
# Draw the text multiple times with small offsets to create a bolder appearance | |
offsets = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)] | |
for off_x, off_y in offsets: | |
cv2.putText(full_img, line, (x_offset + off_x, y_offset + off_y), font, font_scale, font_color, font_thickness, cv2.LINE_AA) | |
return full_img | |
image_path = "images/sa_224577.jpg" | |
input_image = Image.open(image_path) | |
detect_resolution=1024 | |
input_image = resize_image(np.array(input_image, dtype=np.uint8), detect_resolution) | |
region_level_annots = region_level_semantic_api(input_image, topk=5) | |
output = show_semantic_image_label(region_level_annots) | |
image_list = [] | |
input_image = resize_image(input_image, 512) | |
output = resize_image(output, 512) | |
input_image = np.array(input_image, dtype=np.uint8) | |
output = np.array(output, dtype=np.uint8) | |
image_list.append(torch.tensor(input_image).float()) | |
image_list.append(torch.tensor(output).float()) | |
for each in image_list: | |
print(each.shape, type(each)) | |
print(each.max(), each.min()) | |
image_list = torch.stack(image_list).permute(0, 3, 1, 2) | |
print(image_list.shape) | |
save_image(image_list, "images/sample_semantic.jpg", nrow=2, | |
normalize=True) | |