FcF-Inpainting / app.py
osanseviero's picture
Use default theme
eefde43
raw
history blame
7.72 kB
import subprocess
subprocess.run('sh setup.sh', shell=True)
print("Installed the dependencies!")
from typing import Tuple
import dnnlib
from PIL import Image
import numpy as np
import torch
import legacy
import paddlehub as hub
import cv2
u2net = hub.Module(name='U2Net')
# gradio app imports
import gradio as gr
from torchvision.transforms import ToTensor, ToPILImage
image_to_tensor = ToTensor()
tensor_to_image = ToPILImage()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class_idx = None
truncation_psi = 0.1
def create_model(network_pkl):
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'] # type: ignore
G = G.eval().to(device)
netG_params = sum(p.numel() for p in G.parameters())
print("Generator Params: {} M".format(netG_params/1e6))
return G
def fcf_inpaint(G, org_img, erased_img, mask):
label = torch.zeros([1, G.c_dim], device=device)
if G.c_dim != 0:
if class_idx is None:
ValueError("class_idx can't be None.")
label[:, class_idx] = 1
else:
if class_idx is not None:
print ('warn: --class=lbl ignored when running on an unconditional network')
pred_img = G(img=torch.cat([0.5 - mask, erased_img], dim=1), c=label, truncation_psi=truncation_psi, noise_mode='const')
comp_img = mask.to(device) * pred_img + (1 - mask).to(device) * org_img.to(device)
return comp_img
def show_images(img, width, height):
""" Display a batch of images inline. """
img = Image.fromarray(img)
img = img.resize((width, height))
return img
def denorm(img):
img = np.asarray(img[0].cpu(), dtype=np.float32).transpose(1, 2, 0)
img = (img +1) * 127.5
img = np.rint(img).clip(0, 255).astype(np.uint8)
return img
def pil_to_numpy(pil_img: Image) -> Tuple[torch.Tensor, torch.Tensor]:
img = np.array(pil_img)
return torch.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1
def inpaint(input_img, mask, option):
width, height = input_img.size
if option == "Automatic":
result = u2net.Segmentation(
images=[cv2.cvtColor(np.array(input_img), cv2.COLOR_RGB2BGR)],
paths=None,
batch_size=1,
input_size=320,
output_dir='output',
visualization=True)
mask = Image.fromarray(result[0]['mask'])
mask = mask.convert('L')
else:
mask = mask.resize((width,height))
if width != 512 or height != 512:
input_img = input_img.resize((512, 512))
mask = mask.resize((512, 512))
rgb = input_img.convert('RGB')
rgb = np.array(rgb)
mask = np.array(mask)
if option == 'Manual':
mask = (mask[:, :, 0] == rgb[:, :, 0]) * (mask[:, :, 1] == rgb[:, :, 1]) * (mask[:, :, 2] == rgb[:, :, 2])
mask = 1. - mask.astype(np.float32) * 1.
kernel = np.ones((3, 3), np.uint8)
mask = cv2.dilate(mask, kernel)
mask = mask * 255.
mask /= 255.
mask_tensor = torch.from_numpy(mask).to(torch.float32)
mask_tensor = mask_tensor.unsqueeze(0)
mask_tensor = mask_tensor.unsqueeze(0).to(device)
rgb = rgb.transpose(2,0,1)
rgb = torch.from_numpy(rgb.astype(np.float32)).unsqueeze(0)
rgb = (rgb.to(torch.float32) / 127.5 - 1).to(device)
rgb_erased = rgb.clone()
rgb_erased = rgb_erased * (1 - mask_tensor) # erase rgb
rgb_erased = rgb_erased.to(torch.float32)
model = create_model("models/places_512.pkl")
comp_img = fcf_inpaint(G=model, org_img=rgb.to(torch.float32), erased_img=rgb_erased.to(torch.float32), mask=mask_tensor.to(torch.float32))
rgb_erased = denorm(rgb_erased)
comp_img = denorm(comp_img)
return show_images(rgb_erased, width, height), show_images(comp_img, width, height)
gradio_inputs = [gr.inputs.Image(type='pil',
tool="editor",
label="Image"),
# gr.inputs.Image(type='pil',source="canvas", label="Mask", invert_colors=True),
gr.inputs.Image(type='pil',
tool="editor",
label="Mask"),
gr.inputs.Radio(choices=["Automatic", "Manual"], type="value", default="Manual", label="Masking Choice")
]
gradio_outputs = [gr.outputs.Image(label='Image with Hole'),
gr.outputs.Image(label='Inpainted Image')]
examples = [['test_512/person512.png', 'test_512/person512.png', 'Automatic'],
['test_512/a_org.png', 'test_512/a_overlay.png', 'Manual'],
['test_512/f_org.png', 'test_512/f_overlay.png', 'Manual'],
['test_512/g_org.png', 'test_512/g_overlay.png', 'Manual'],
['test_512/h_org.png', 'test_512/h_overlay.png', 'Manual'],
['test_512/i_org.png', 'test_512/i_overlay.png', 'Manual'],
['test_512/b_org.png', 'test_512/b_overlay.png', 'Manual'],
['test_512/c_org.png', 'test_512/c_overlay.png', 'Manual'],
['test_512/d_org.png', 'test_512/d_overlay.png', 'Manual'],
['test_512/e_org.png', 'test_512/e_overlay.png', 'Manual']]
title = "FcF-Inpainting"
description = "<p style='color:royalblue; font-weight: w300;'> \
[Note: Queue time may take up to 20 seconds! The image and mask are resized to 512x512 before inpainting.] To use FcF-Inpainting: <br> \
(1) <span style='color:#E0B941;'>Upload the Same Image to both</span> input boxes (Image and Mask) below. <br> \
(2a) <span style='color:#E0B941;'>Manual Option:</span> The TUI Image Editor used by gradio <a style='color: #E0B941;' href='https://github.com/gradio-app/gradio/issues/1810' target='_blank'>changes the image when saved</a>. We compute the mask after comparing the two inputs. Therefore, we need to save both inputs: <br> \
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; - <span style='color:#E0B941;'>Image:</span> Click on the edit button on the top-right and save without making any changes. <br> \
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; - <span style='color:#E0B941;'>Mask:</span> Draw a mask (hole) using the brush (click on the edit button in the top right of the Mask View and select the draw option). <br> \
(2b) <span style='color:#E0B941;'>Automatic Option:</span> This option will generate a mask using a pretrained U2Net model. <br> \
(3) Click on <span style='color:#E0B941;'>Submit</span> and witness the MAGIC! 🪄 ✨ ✨</p>"
article = "<p style='color: #E0B941; text-align: center'> <a style='color: #E0B941;' href='https://praeclarumjj3.github.io/fcf-inpainting/' target='_blank'>Project Page</a> | <a style='color: #E0B941;' href='https://github.com/SHI-Labs/FcF-Inpainting' target='_blank'> Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand</a> | <a style='color: #E0B941;' href='https://github.com/SHI-Labs/FcF-Inpainting' target='_blank'>Github Repo</a></p>"
css = ".image-preview {height: 32rem; width: auto;} .output-image {height: 32rem; width: auto;} .panel-buttons { display: flex; flex-direction: row;}"
iface = gr.Interface(fn=inpaint, inputs=gradio_inputs,
outputs=gradio_outputs,
css=css,
layout="vertical",
examples_per_page=5,
thumbnail="fcf_gan.png",
allow_flagging="never",
examples=examples, title=title,
description=description, article=article)
iface.launch(enable_queue=True)