Spaces:
Sleeping
Sleeping
# ------------------------------------------------------------------------------ | |
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/maskformer_model.py | |
# Modified by Jitesh Jain (https://github.com/praeclarumjj3) | |
# ------------------------------------------------------------------------------ | |
from typing import Tuple | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.data import MetadataCatalog | |
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head | |
from detectron2.modeling.backbone import Backbone | |
from detectron2.modeling.postprocessing import sem_seg_postprocess | |
from detectron2.structures import Boxes, ImageList, Instances, BitMasks | |
from detectron2.utils.memory import retry_if_cuda_oom | |
from .modeling.criterion import SetCriterion | |
from .modeling.matcher import HungarianMatcher | |
from einops import rearrange | |
from .modeling.transformer_decoder.text_transformer import TextTransformer | |
from .modeling.transformer_decoder.oneformer_transformer_decoder import MLP | |
from oneformer.data.tokenizer import SimpleTokenizer, Tokenize | |
class OneFormer(nn.Module): | |
""" | |
Main class for mask classification semantic segmentation architectures. | |
""" | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
task_mlp: nn.Module, | |
text_encoder: nn.Module, | |
text_projector: nn.Module, | |
criterion: nn.Module, | |
prompt_ctx: nn.Embedding, | |
num_queries: int, | |
object_mask_threshold: float, | |
overlap_threshold: float, | |
metadata, | |
size_divisibility: int, | |
sem_seg_postprocess_before_inference: bool, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
# inference | |
semantic_on: bool, | |
panoptic_on: bool, | |
instance_on: bool, | |
detection_on: bool, | |
test_topk_per_image: int, | |
task_seq_len: int, | |
max_seq_len: int, | |
is_demo: bool, | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
criterion: a module that defines the loss | |
num_queries: int, number of queries | |
object_mask_threshold: float, threshold to filter query based on classification score | |
for panoptic segmentation inference | |
overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
segmentation inference | |
size_divisibility: Some backbones require the input height and width to be divisible by a | |
specific integer. We can use this to override such requirement. | |
sem_seg_postprocess_before_inference: whether to resize the prediction back | |
to original input size before semantic segmentation inference or after. | |
For high-resolution dataset like Mapillary, resizing predictions before | |
inference will cause OOM error. | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
semantic_on: bool, whether to output semantic segmentation prediction | |
instance_on: bool, whether to output instance segmentation prediction | |
panoptic_on: bool, whether to output panoptic segmentation prediction | |
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
""" | |
super().__init__() | |
self.backbone = backbone | |
self.sem_seg_head = sem_seg_head | |
self.task_mlp = task_mlp | |
self.text_encoder = text_encoder | |
self.text_projector = text_projector | |
self.prompt_ctx = prompt_ctx | |
self.criterion = criterion | |
self.num_queries = num_queries | |
self.overlap_threshold = overlap_threshold | |
self.object_mask_threshold = object_mask_threshold | |
self.metadata = metadata | |
if size_divisibility < 0: | |
# use backbone size_divisibility if not set | |
size_divisibility = self.backbone.size_divisibility | |
self.size_divisibility = size_divisibility | |
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) | |
# additional args | |
self.semantic_on = semantic_on | |
self.instance_on = instance_on | |
self.panoptic_on = panoptic_on | |
self.detection_on = detection_on | |
self.test_topk_per_image = test_topk_per_image | |
self.text_tokenizer = Tokenize(SimpleTokenizer(), max_seq_len=max_seq_len) | |
self.task_tokenizer = Tokenize(SimpleTokenizer(), max_seq_len=task_seq_len) | |
self.is_demo = is_demo | |
self.thing_indices = [k for k in self.metadata.thing_dataset_id_to_contiguous_id.keys()] | |
if not self.semantic_on: | |
assert self.sem_seg_postprocess_before_inference | |
def from_config(cls, cfg): | |
backbone = build_backbone(cfg) | |
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape()) | |
if cfg.MODEL.IS_TRAIN: | |
text_encoder = TextTransformer(context_length=cfg.MODEL.TEXT_ENCODER.CONTEXT_LENGTH, | |
width=cfg.MODEL.TEXT_ENCODER.WIDTH, | |
layers=cfg.MODEL.TEXT_ENCODER.NUM_LAYERS, | |
vocab_size=cfg.MODEL.TEXT_ENCODER.VOCAB_SIZE) | |
text_projector = MLP(text_encoder.width, cfg.MODEL.ONE_FORMER.HIDDEN_DIM, | |
cfg.MODEL.ONE_FORMER.HIDDEN_DIM, cfg.MODEL.TEXT_ENCODER.PROJ_NUM_LAYERS) | |
if cfg.MODEL.TEXT_ENCODER.N_CTX > 0: | |
prompt_ctx = nn.Embedding(cfg.MODEL.TEXT_ENCODER.N_CTX, cfg.MODEL.TEXT_ENCODER.WIDTH) | |
else: | |
prompt_ctx = None | |
else: | |
text_encoder = None | |
text_projector = None | |
prompt_ctx = None | |
task_mlp = MLP(cfg.INPUT.TASK_SEQ_LEN, cfg.MODEL.ONE_FORMER.HIDDEN_DIM, | |
cfg.MODEL.ONE_FORMER.HIDDEN_DIM, 2) | |
# Loss parameters: | |
deep_supervision = cfg.MODEL.ONE_FORMER.DEEP_SUPERVISION | |
no_object_weight = cfg.MODEL.ONE_FORMER.NO_OBJECT_WEIGHT | |
# loss weights | |
class_weight = cfg.MODEL.ONE_FORMER.CLASS_WEIGHT | |
dice_weight = cfg.MODEL.ONE_FORMER.DICE_WEIGHT | |
mask_weight = cfg.MODEL.ONE_FORMER.MASK_WEIGHT | |
contrastive_weight = cfg.MODEL.ONE_FORMER.CONTRASTIVE_WEIGHT | |
# building criterion | |
matcher = HungarianMatcher( | |
cost_class=class_weight, | |
cost_mask=mask_weight, | |
cost_dice=dice_weight, | |
num_points=cfg.MODEL.ONE_FORMER.TRAIN_NUM_POINTS, | |
) | |
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, | |
"loss_dice": dice_weight, "loss_contrastive": contrastive_weight} | |
if deep_supervision: | |
dec_layers = cfg.MODEL.ONE_FORMER.DEC_LAYERS | |
aux_weight_dict = {} | |
for i in range(dec_layers - 1): | |
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) | |
weight_dict.update(aux_weight_dict) | |
losses = ["labels", "masks", "contrastive"] | |
criterion = SetCriterion( | |
sem_seg_head.num_classes, | |
matcher=matcher, | |
weight_dict=weight_dict, | |
eos_coef=no_object_weight, | |
contrast_temperature=cfg.MODEL.ONE_FORMER.CONTRASTIVE_TEMPERATURE, | |
losses=losses, | |
num_points=cfg.MODEL.ONE_FORMER.TRAIN_NUM_POINTS, | |
oversample_ratio=cfg.MODEL.ONE_FORMER.OVERSAMPLE_RATIO, | |
importance_sample_ratio=cfg.MODEL.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO, | |
) | |
return { | |
"backbone": backbone, | |
"sem_seg_head": sem_seg_head, | |
"task_mlp": task_mlp, | |
"prompt_ctx": prompt_ctx, | |
"text_encoder": text_encoder, | |
"text_projector": text_projector, | |
"criterion": criterion, | |
"num_queries": cfg.MODEL.ONE_FORMER.NUM_OBJECT_QUERIES, | |
"object_mask_threshold": cfg.MODEL.TEST.OBJECT_MASK_THRESHOLD, | |
"overlap_threshold": cfg.MODEL.TEST.OVERLAP_THRESHOLD, | |
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), | |
"size_divisibility": cfg.MODEL.ONE_FORMER.SIZE_DIVISIBILITY, | |
"sem_seg_postprocess_before_inference": ( | |
cfg.MODEL.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE | |
or cfg.MODEL.TEST.PANOPTIC_ON | |
or cfg.MODEL.TEST.INSTANCE_ON | |
), | |
"pixel_mean": cfg.MODEL.PIXEL_MEAN, | |
"pixel_std": cfg.MODEL.PIXEL_STD, | |
# inference | |
"semantic_on": cfg.MODEL.TEST.SEMANTIC_ON, | |
"instance_on": cfg.MODEL.TEST.INSTANCE_ON, | |
"panoptic_on": cfg.MODEL.TEST.PANOPTIC_ON, | |
"detection_on": cfg.MODEL.TEST.DETECTION_ON, | |
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, | |
"task_seq_len": cfg.INPUT.TASK_SEQ_LEN, | |
"max_seq_len": cfg.INPUT.MAX_SEQ_LEN, | |
"is_demo": cfg.MODEL.IS_DEMO, | |
} | |
def device(self): | |
return self.pixel_mean.device | |
def encode_text(self, text): | |
assert text.ndim in [2, 3], text.ndim | |
b = text.shape[0] | |
squeeze_dim = False | |
num_text = 1 | |
if text.ndim == 3: | |
num_text = text.shape[1] | |
text = rearrange(text, 'b n l -> (b n) l', n=num_text) | |
squeeze_dim = True | |
# [B, C] | |
x = self.text_encoder(text) | |
text_x = self.text_projector(x) | |
if squeeze_dim: | |
text_x = rearrange(text_x, '(b n) c -> b n c', n=num_text) | |
if self.prompt_ctx is not None: | |
text_ctx = self.prompt_ctx.weight.unsqueeze(0).repeat(text_x.shape[0], 1, 1) | |
text_x = torch.cat([text_x, text_ctx], dim=1) | |
return {"texts": text_x} | |
def forward(self, batched_inputs): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": per-region ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "sem_seg": | |
A Tensor that represents the | |
per-pixel segmentation prediced by the head. | |
The prediction has shape KxHxW that represents the logits of | |
each class for each pixel. | |
* "panoptic_seg": | |
A tuple that represent panoptic output | |
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
Each dict contains keys "id", "category_id", "isthing". | |
""" | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
tasks = torch.cat([self.task_tokenizer(x["task"]).to(self.device).unsqueeze(0) for x in batched_inputs], dim=0) | |
tasks = self.task_mlp(tasks.float()) | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, tasks) | |
if self.training: | |
texts = torch.cat([self.text_tokenizer(x["text"]).to(self.device).unsqueeze(0) for x in batched_inputs], dim=0) | |
texts_x = self.encode_text(texts) | |
outputs = {**outputs, **texts_x} | |
# mask classification target | |
if "instances" in batched_inputs[0]: | |
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] | |
targets = self.prepare_targets(gt_instances, images) | |
else: | |
targets = None | |
# bipartite matching-based loss | |
losses = self.criterion(outputs, targets) | |
for k in list(losses.keys()): | |
if k in self.criterion.weight_dict: | |
losses[k] *= self.criterion.weight_dict[k] | |
else: | |
# remove this loss if not specified in `weight_dict` | |
losses.pop(k) | |
return losses | |
else: | |
mask_cls_results = outputs["pred_logits"] | |
mask_pred_results = outputs["pred_masks"] | |
# upsample masks | |
mask_pred_results = F.interpolate( | |
mask_pred_results, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
del outputs | |
processed_results = [] | |
for i, data in enumerate(zip( | |
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes | |
)): | |
mask_cls_result, mask_pred_result, input_per_image, image_size = data | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
processed_results.append({}) | |
if self.sem_seg_postprocess_before_inference: | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
) | |
mask_cls_result = mask_cls_result.to(mask_pred_result) | |
# semantic segmentation inference | |
if self.semantic_on: | |
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) | |
if not self.sem_seg_postprocess_before_inference: | |
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) | |
processed_results[-1]["sem_seg"] = r | |
# panoptic segmentation inference | |
if self.panoptic_on: | |
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) | |
processed_results[-1]["panoptic_seg"] = panoptic_r | |
# instance segmentation inference | |
if self.instance_on: | |
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result) | |
processed_results[-1]["instances"] = instance_r | |
if self.detection_on: | |
bbox_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result) | |
processed_results[-1]["box_instances"] = bbox_r | |
return processed_results | |
def prepare_targets(self, targets, images): | |
h_pad, w_pad = images.tensor.shape[-2:] | |
new_targets = [] | |
for targets_per_image in targets: | |
# pad gt | |
gt_masks = targets_per_image.gt_masks | |
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks | |
new_targets.append( | |
{ | |
"labels": targets_per_image.gt_classes, | |
"masks": padded_masks, | |
} | |
) | |
return new_targets | |
def semantic_inference(self, mask_cls, mask_pred): | |
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
mask_pred = mask_pred.sigmoid() | |
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
return semseg | |
def panoptic_inference(self, mask_cls, mask_pred): | |
scores, labels = F.softmax(mask_cls, dim=-1).max(-1) | |
mask_pred = mask_pred.sigmoid() | |
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) | |
cur_scores = scores[keep] | |
cur_classes = labels[keep] | |
cur_masks = mask_pred[keep] | |
cur_mask_cls = mask_cls[keep] | |
cur_mask_cls = cur_mask_cls[:, :-1] | |
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks | |
h, w = cur_masks.shape[-2:] | |
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) | |
segments_info = [] | |
current_segment_id = 0 | |
if cur_masks.shape[0] == 0: | |
# We didn't detect any mask :( | |
return panoptic_seg, segments_info | |
else: | |
# take argmax | |
cur_mask_ids = cur_prob_masks.argmax(0) | |
stuff_memory_list = {} | |
for k in range(cur_classes.shape[0]): | |
pred_class = cur_classes[k].item() | |
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
mask_area = (cur_mask_ids == k).sum().item() | |
original_area = (cur_masks[k] >= 0.5).sum().item() | |
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) | |
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: | |
if mask_area / original_area < self.overlap_threshold: | |
continue | |
# merge stuff regions | |
if not isthing: | |
if int(pred_class) in stuff_memory_list.keys(): | |
panoptic_seg[mask] = stuff_memory_list[int(pred_class)] | |
continue | |
else: | |
stuff_memory_list[int(pred_class)] = current_segment_id + 1 | |
current_segment_id += 1 | |
panoptic_seg[mask] = current_segment_id | |
segments_info.append( | |
{ | |
"id": current_segment_id, | |
"isthing": bool(isthing), | |
"category_id": int(pred_class), | |
} | |
) | |
return panoptic_seg, segments_info | |
def instance_inference(self, mask_cls, mask_pred): | |
# mask_pred is already processed to have the same shape as original input | |
image_size = mask_pred.shape[-2:] | |
# [Q, K] | |
scores = F.softmax(mask_cls, dim=-1)[:, :-1] | |
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) | |
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) | |
labels_per_image = labels[topk_indices] | |
topk_indices = topk_indices // self.sem_seg_head.num_classes | |
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) | |
mask_pred = mask_pred[topk_indices] | |
# Only consider scores with confidence over [self.object_mask_threshold] for demo | |
if self.is_demo: | |
keep = scores_per_image > self.object_mask_threshold | |
scores_per_image = scores_per_image[keep] | |
labels_per_image = labels_per_image[keep] | |
mask_pred = mask_pred[keep] | |
# if this is panoptic segmentation, we only keep the "thing" classes | |
if self.panoptic_on: | |
keep = torch.zeros_like(scores_per_image).bool() | |
for i, lab in enumerate(labels_per_image): | |
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
scores_per_image = scores_per_image[keep] | |
labels_per_image = labels_per_image[keep] | |
mask_pred = mask_pred[keep] | |
if 'ade20k' in self.metadata.name: | |
for i in range(labels_per_image.shape[0]): | |
labels_per_image[i] = self.thing_indices.index(labels_per_image[i].item()) | |
result = Instances(image_size) | |
# mask (before sigmoid) | |
result.pred_masks = (mask_pred > 0).float() | |
if self.detection_on: | |
# Uncomment the following to get boxes from masks (this is slow) | |
result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() | |
else: | |
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
# calculate average mask prob | |
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
result.scores = scores_per_image * mask_scores_per_image | |
result.pred_classes = labels_per_image | |
return result |