import torch print("Installed the dependencies!") import numpy as np from PIL import Image import cv2 import imutils from detectron2.config import get_cfg from detectron2.projects.deeplab import add_deeplab_config from detectron2.data import MetadataCatalog from oneformer import ( add_oneformer_config, add_common_config, add_swin_config, add_dinat_config, ) from demo.defaults import DefaultPredictor from demo.visualizer import Visualizer, ColorMode import gradio as gr from huggingface_hub import hf_hub_download KEY_DICT = {"Cityscapes (19 classes)": "cityscapes", "COCO (133 classes)": "coco", "ADE20K (150 classes)": "ade20k",} SWIN_CFG_DICT = {"cityscapes": "configs/cityscapes/oneformer_swin_large_IN21k_384_bs16_90k.yaml", "coco": "configs/coco/oneformer_swin_large_IN21k_384_bs16_100ep.yaml", "ade20k": "configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml",} SWIN_MODEL_DICT = {"cityscapes": hf_hub_download(repo_id="shi-labs/swin_l_oneformer_cityscapes", filename="250_16_swin_l_oneformer_cityscapes_90k.pth"), "coco": hf_hub_download(repo_id="shi-labs/swin_l_oneformer_coco", filename="150_16_swin_l_oneformer_coco_100ep.pth"), "ade20k": hf_hub_download(repo_id="shi-labs/swin_l_oneformer_ade20k", filename="250_16_swin_l_oneformer_ade20k_160k.pth") } DINAT_CFG_DICT = {"cityscapes": "configs/cityscapes/oneformer_dinat_large_bs16_90k.yaml", "coco": "configs/coco/oneformer_dinat_large_bs16_100ep.yaml", "ade20k": "configs/ade20k/oneformer_dinat_large_IN21k_384_bs16_160k.yaml",} DINAT_MODEL_DICT = {"cityscapes": hf_hub_download(repo_id="shi-labs/dinat_l_oneformer_cityscapes", filename="250_16_dinat_l_oneformer_cityscapes_90k.pth"), "coco": hf_hub_download(repo_id="shi-labs/dinat_l_oneformer_coco", filename="150_16_dinat_l_oneformer_coco_100ep.pth"), "ade20k": hf_hub_download(repo_id="shi-labs/dinat_l_oneformer_ade20k", filename="250_16_dinat_l_oneformer_ade20k_160k.pth") } MODEL_DICT = {"DiNAT-L": DINAT_MODEL_DICT, "Swin-L": SWIN_MODEL_DICT } CFG_DICT = {"DiNAT-L": DINAT_CFG_DICT, "Swin-L": SWIN_CFG_DICT } WIDTH_DICT = {"cityscapes": 512, "coco": 512, "ade20k": 640} cpu_device = torch.device("cpu") PREDICTORS = { "DiNAT-L": { "Cityscapes (19 classes)": None, "COCO (133 classes)": None, "ADE20K (150 classes)": None }, "Swin-L": { "Cityscapes (19 classes)": None, "COCO (133 classes)": None, "ADE20K (150 classes)": None } } METADATA = { "DiNAT-L": { "Cityscapes (19 classes)": None, "COCO (133 classes)": None, "ADE20K (150 classes)": None }, "Swin-L": { "Cityscapes (19 classes)": None, "COCO (133 classes)": None, "ADE20K (150 classes)": None } } def setup_modules(): for dataset in ["Cityscapes (19 classes)", "COCO (133 classes)", "ADE20K (150 classes)"]: for backbone in ["DiNAT-L", "Swin-L"]: cfg = setup_cfg(dataset, backbone) metadata = MetadataCatalog.get( cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused" ) if 'cityscapes_fine_sem_seg_val' in cfg.DATASETS.TEST_PANOPTIC[0]: from cityscapesscripts.helpers.labels import labels stuff_colors = [k.color for k in labels if k.trainId != 255] metadata = metadata.set(stuff_colors=stuff_colors) PREDICTORS[backbone][dataset] = DefaultPredictor(cfg) METADATA[backbone][dataset] = metadata def setup_cfg(dataset, backbone): # load config from file and command-line arguments cfg = get_cfg() add_deeplab_config(cfg) add_common_config(cfg) add_swin_config(cfg) add_oneformer_config(cfg) add_dinat_config(cfg) dataset = KEY_DICT[dataset] cfg_path = CFG_DICT[backbone][dataset] cfg.merge_from_file(cfg_path) if torch.cuda.is_available(): cfg.MODEL.DEVICE = 'cuda' else: cfg.MODEL.DEVICE = 'cpu' cfg.MODEL.WEIGHTS = MODEL_DICT[backbone][dataset] cfg.freeze() return cfg # def setup_modules(dataset, backbone): # cfg = setup_cfg(dataset, backbone) # predictor = DefaultPredictor(cfg) # # predictor = PREDICTORS[backbone][dataset] # metadata = MetadataCatalog.get( # cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused" # ) # if 'cityscapes_fine_sem_seg_val' in cfg.DATASETS.TEST_PANOPTIC[0]: # from cityscapesscripts.helpers.labels import labels # stuff_colors = [k.color for k in labels if k.trainId != 255] # metadata = metadata.set(stuff_colors=stuff_colors) # return predictor, metadata def panoptic_run(img, predictor, metadata): visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE) predictions = predictor(img, "panoptic") panoptic_seg, segments_info = predictions["panoptic_seg"] out = visualizer.draw_panoptic_seg_predictions( panoptic_seg.to(cpu_device), segments_info, alpha=0.5 ) visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE) out_map = visualizer_map.draw_panoptic_seg_predictions( panoptic_seg.to(cpu_device), segments_info, alpha=1, is_text=False ) return out, out_map def instance_run(img, predictor, metadata): visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE) predictions = predictor(img, "instance") instances = predictions["instances"].to(cpu_device) out = visualizer.draw_instance_predictions(predictions=instances, alpha=0.5) visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE) out_map = visualizer_map.draw_instance_predictions(predictions=instances, alpha=1, is_text=False) return out, out_map def semantic_run(img, predictor, metadata): visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE) predictions = predictor(img, "semantic") out = visualizer.draw_sem_seg( predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=0.5 ) visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE) out_map = visualizer_map.draw_sem_seg( predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=1, is_text=False ) return out, out_map TASK_INFER = {"the task is panoptic": panoptic_run, "the task is instance": instance_run, "the task is semantic": semantic_run} def segment(path, task, dataset, backbone): # predictor, metadata = setup_modules(dataset, backbone) predictor = PREDICTORS[backbone][dataset] metadata = METADATA[backbone][dataset] img = cv2.imread(path) width = WIDTH_DICT[KEY_DICT[dataset]] img = imutils.resize(img, width=width) out, out_map = TASK_INFER[task](img, predictor, metadata) out = Image.fromarray(out.get_image()) out_map = Image.fromarray(out_map.get_image()) return out, out_map title = "OneFormer: One Transformer to Rule Universal Image Segmentation" description = "
Jitesh Jain Jiachen Li* MangTik Chiu* Ali Hassani Nikita Orlov Humphrey Shi
" \ + "Project Page | ArXiv Paper | Github Repo
" \ + + "\ OneFormer is the first multi-task universal image segmentation framework based on transformers. Our single OneFormer model achieves state-of-the-art performance across all three segmentation tasks with a single task-conditioned joint training process. OneFormer uses a task token to condition the model on the task in focus, making our architecture task-guided for training, and task-dynamic for inference, all with a single model. We believe OneFormer is a significant step towards making image segmentation more universal and accessible.\
" \ + "[Note: Inference on CPU may take upto 2 minutes. On a single RTX A6000 GPU, OneFormer is able to inference at more than 15 FPS.]
" # description = "Project Page | OneFormer: One Transformer to Rule Universal Image Segmentation | Github
" \ # + " \
# [Note: Inference on CPU may take upto 2 minutes.] This is the official gradio demo for our paper OneFormer: One Transformer to Rule Universal Image Segmentation To use OneFormer:
\
# (1) Upload an Image or select a sample image from the examples
\
# (2) Select the value of the Task Token Input.
\
# (3) Select the Model and Backbone.