similarities / app.py
shibing624's picture
Update app.py
6d6e95a verified
raw
history blame
1.67 kB
# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description: text similarity example, fine-tuned by CoSENT model
"""
import gradio as gr
from similarities import Similarity
# 中文句向量模型
sim_model = Similarity(model_name_or_path='shibing624/text2vec-base-chinese')
def load_file(path):
with open(path, 'r', encoding='utf-8') as f:
return f.read().split('\n')
sim_model.add_corpus(load_file('corpus.txt'))
def ai_text(query):
res = sim_model.most_similar(queries=query, topn=5)
print(res)
for q_id, c in res.items():
print('query:', query)
print("search top 5:")
for corpus_id, s in c.items():
print(f'\t{sim_model.corpus[corpus_id]}: {s:.4f}')
res_show = '\n'.join(['search top5:'] + [f'text: {sim_model.corpus[corpus_id]} score: {s:.4f}' for corpus_id, s in
list(res.values())[0].items()])
return res_show
if __name__ == '__main__':
examples = [
['星巴克被嘲笑了'],
['西班牙失业率超过50%'],
['她在看书'],
['一个人弹琴'],
]
gr.Interface(ai_text,
inputs=gr.Textbox(label="Enter Query"),
outputs=gr.Textbox(label="Output Box"),
title="Chinese Text Semantic Search Model",
description="Copy or input Chinese text here. Submit and the machine will find the most similarity texts.",
article="Link to <a href='https://github.com/shibing624/similarities' style='color:blue;' target='_blank\'>Github REPO</a>",
examples=examples
).launch()