|
""" CLIP Model |
|
|
|
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. |
|
""" |
|
from dataclasses import dataclass |
|
import logging |
|
import math |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from .hf_model import HFTextEncoder |
|
from .modified_resnet import ModifiedResNet |
|
from .timm_model import TimmModel |
|
from .transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer |
|
from .utils import to_2tuple |
|
|
|
|
|
@dataclass |
|
class CLIPVisionCfg: |
|
layers: Union[Tuple[int, int, int, int], int] = 12 |
|
width: int = 768 |
|
head_width: int = 64 |
|
mlp_ratio: float = 4.0 |
|
patch_size: int = 16 |
|
image_size: Union[Tuple[int, int], int] = 224 |
|
|
|
ls_init_value: Optional[float] = None |
|
patch_dropout: float = 0. |
|
input_patchnorm: bool = False |
|
global_average_pool: bool = False |
|
attentional_pool: bool = False |
|
n_queries: int = 256 |
|
attn_pooler_heads: int = 8 |
|
output_tokens: bool = False |
|
|
|
timm_model_name: str = None |
|
timm_model_pretrained: bool = False |
|
timm_pool: str = 'avg' |
|
timm_proj: str = 'linear' |
|
timm_proj_bias: bool = False |
|
timm_drop: float = 0. |
|
timm_drop_path: Optional[float] = None |
|
|
|
|
|
@dataclass |
|
class CLIPTextCfg: |
|
context_length: int = 77 |
|
vocab_size: int = 49408 |
|
width: int = 512 |
|
heads: int = 8 |
|
layers: int = 12 |
|
ls_init_value: Optional[float] = None |
|
hf_model_name: str = None |
|
hf_tokenizer_name: str = None |
|
hf_model_pretrained: bool = True |
|
proj: str = 'mlp' |
|
pooler_type: str = 'mean_pooler' |
|
embed_cls: bool = False |
|
pad_id: int = 0 |
|
output_tokens: bool = False |
|
|
|
|
|
def get_cast_dtype(precision: str): |
|
cast_dtype = None |
|
if precision == 'bf16': |
|
cast_dtype = torch.bfloat16 |
|
elif precision == 'fp16': |
|
cast_dtype = torch.float16 |
|
return cast_dtype |
|
|
|
|
|
def get_input_dtype(precision: str): |
|
input_dtype = None |
|
if precision in ('bf16', 'pure_bf16'): |
|
input_dtype = torch.bfloat16 |
|
elif precision in ('fp16', 'pure_fp16'): |
|
input_dtype = torch.float16 |
|
return input_dtype |
|
|
|
|
|
def _build_vision_tower( |
|
embed_dim: int, |
|
vision_cfg: CLIPVisionCfg, |
|
quick_gelu: bool = False, |
|
cast_dtype: Optional[torch.dtype] = None |
|
): |
|
if isinstance(vision_cfg, dict): |
|
vision_cfg = CLIPVisionCfg(**vision_cfg) |
|
|
|
|
|
|
|
|
|
act_layer = QuickGELU if quick_gelu else nn.GELU |
|
|
|
if vision_cfg.timm_model_name: |
|
visual = TimmModel( |
|
vision_cfg.timm_model_name, |
|
pretrained=vision_cfg.timm_model_pretrained, |
|
pool=vision_cfg.timm_pool, |
|
proj=vision_cfg.timm_proj, |
|
proj_bias=vision_cfg.timm_proj_bias, |
|
drop=vision_cfg.timm_drop, |
|
drop_path=vision_cfg.timm_drop_path, |
|
patch_drop=vision_cfg.patch_dropout if vision_cfg.patch_dropout > 0 else None, |
|
embed_dim=embed_dim, |
|
image_size=vision_cfg.image_size, |
|
) |
|
elif isinstance(vision_cfg.layers, (tuple, list)): |
|
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width |
|
visual = ModifiedResNet( |
|
layers=vision_cfg.layers, |
|
output_dim=embed_dim, |
|
heads=vision_heads, |
|
image_size=vision_cfg.image_size, |
|
width=vision_cfg.width, |
|
) |
|
else: |
|
vision_heads = vision_cfg.width // vision_cfg.head_width |
|
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm |
|
visual = VisionTransformer( |
|
image_size=vision_cfg.image_size, |
|
patch_size=vision_cfg.patch_size, |
|
width=vision_cfg.width, |
|
layers=vision_cfg.layers, |
|
heads=vision_heads, |
|
mlp_ratio=vision_cfg.mlp_ratio, |
|
ls_init_value=vision_cfg.ls_init_value, |
|
patch_dropout=vision_cfg.patch_dropout, |
|
input_patchnorm=vision_cfg.input_patchnorm, |
|
global_average_pool=vision_cfg.global_average_pool, |
|
attentional_pool=vision_cfg.attentional_pool, |
|
n_queries=vision_cfg.n_queries, |
|
attn_pooler_heads=vision_cfg.attn_pooler_heads, |
|
output_tokens=vision_cfg.output_tokens, |
|
output_dim=embed_dim, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
) |
|
|
|
return visual |
|
|
|
|
|
def _build_text_tower( |
|
embed_dim: int, |
|
text_cfg: CLIPTextCfg, |
|
quick_gelu: bool = False, |
|
cast_dtype: Optional[torch.dtype] = None, |
|
): |
|
if isinstance(text_cfg, dict): |
|
text_cfg = CLIPTextCfg(**text_cfg) |
|
|
|
if text_cfg.hf_model_name: |
|
text = HFTextEncoder( |
|
text_cfg.hf_model_name, |
|
output_dim=embed_dim, |
|
proj=text_cfg.proj, |
|
pooler_type=text_cfg.pooler_type, |
|
pretrained=text_cfg.hf_model_pretrained, |
|
output_tokens=text_cfg.output_tokens, |
|
) |
|
else: |
|
act_layer = QuickGELU if quick_gelu else nn.GELU |
|
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm |
|
|
|
text = TextTransformer( |
|
context_length=text_cfg.context_length, |
|
vocab_size=text_cfg.vocab_size, |
|
width=text_cfg.width, |
|
heads=text_cfg.heads, |
|
layers=text_cfg.layers, |
|
ls_init_value=text_cfg.ls_init_value, |
|
output_dim=embed_dim, |
|
embed_cls=text_cfg.embed_cls, |
|
output_tokens=text_cfg.output_tokens, |
|
pad_id=text_cfg.pad_id, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
) |
|
return text |
|
|
|
|
|
class CLIP(nn.Module): |
|
output_dict: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
vision_cfg: CLIPVisionCfg, |
|
text_cfg: CLIPTextCfg, |
|
quick_gelu: bool = False, |
|
cast_dtype: Optional[torch.dtype] = None, |
|
output_dict: bool = False, |
|
): |
|
super().__init__() |
|
self.output_dict = output_dict |
|
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) |
|
|
|
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) |
|
self.transformer = text.transformer |
|
self.context_length = text.context_length |
|
self.vocab_size = text.vocab_size |
|
self.token_embedding = text.token_embedding |
|
self.positional_embedding = text.positional_embedding |
|
self.ln_final = text.ln_final |
|
self.text_projection = text.text_projection |
|
self.register_buffer('attn_mask', text.attn_mask, persistent=False) |
|
|
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): |
|
|
|
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.visual.set_grad_checkpointing(enable) |
|
self.transformer.grad_checkpointing = enable |
|
|
|
def encode_image(self, image, normalize: bool = False): |
|
features = self.visual(image) |
|
return F.normalize(features, dim=-1) if normalize else features |
|
|
|
def encode_text(self, text, normalize: bool = False): |
|
cast_dtype = self.transformer.get_cast_dtype() |
|
|
|
x = self.token_embedding(text).to(cast_dtype) |
|
|
|
x = x + self.positional_embedding.to(cast_dtype) |
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x, attn_mask=self.attn_mask) |
|
x = x.permute(1, 0, 2) |
|
x = self.ln_final(x) |
|
|
|
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection |
|
return F.normalize(x, dim=-1) if normalize else x |
|
|
|
def forward( |
|
self, |
|
image: Optional[torch.Tensor] = None, |
|
text: Optional[torch.Tensor] = None, |
|
): |
|
image_features = self.encode_image(image, normalize=True) if image is not None else None |
|
text_features = self.encode_text(text, normalize=True) if text is not None else None |
|
if self.output_dict: |
|
return { |
|
"image_features": image_features, |
|
"text_features": text_features, |
|
"logit_scale": self.logit_scale.exp() |
|
} |
|
return image_features, text_features, self.logit_scale.exp() |
|
|
|
|
|
class CustomTextCLIP(nn.Module): |
|
output_dict: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
vision_cfg: CLIPVisionCfg, |
|
text_cfg: CLIPTextCfg, |
|
quick_gelu: bool = False, |
|
cast_dtype: Optional[torch.dtype] = None, |
|
output_dict: bool = False, |
|
): |
|
super().__init__() |
|
self.output_dict = output_dict |
|
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) |
|
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) |
|
self.context_length = self.text.context_length |
|
self.vocab_size = self.text.vocab_size |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): |
|
|
|
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) |
|
|
|
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): |
|
self.text.lock(unlocked_layers, freeze_layer_norm) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.visual.set_grad_checkpointing(enable) |
|
self.text.set_grad_checkpointing(enable) |
|
|
|
def encode_image(self, image, normalize: bool = False): |
|
features = self.visual(image) |
|
return F.normalize(features, dim=-1) if normalize else features |
|
|
|
def encode_text(self, text, normalize: bool = False): |
|
features = self.text(text) |
|
return F.normalize(features, dim=-1) if normalize else features |
|
|
|
def forward( |
|
self, |
|
image: Optional[torch.Tensor] = None, |
|
text: Optional[torch.Tensor] = None, |
|
): |
|
image_features = self.encode_image(image, normalize=True) if image is not None else None |
|
text_features = self.encode_text(text, normalize=True) if text is not None else None |
|
if self.output_dict: |
|
return { |
|
"image_features": image_features, |
|
"text_features": text_features, |
|
"logit_scale": self.logit_scale.exp() |
|
} |
|
return image_features, text_features, self.logit_scale.exp() |
|
|
|
|
|
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16): |
|
"""Convert applicable model parameters to low-precision (bf16 or fp16)""" |
|
|
|
def _convert_weights(l): |
|
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): |
|
l.weight.data = l.weight.data.to(dtype) |
|
if l.bias is not None: |
|
l.bias.data = l.bias.data.to(dtype) |
|
|
|
if isinstance(l, (nn.MultiheadAttention, Attention)): |
|
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: |
|
tensor = getattr(l, attr) |
|
if tensor is not None: |
|
tensor.data = tensor.data.to(dtype) |
|
|
|
if isinstance(l, (CLIP, TextTransformer)): |
|
|
|
attr = getattr(l, "text_projection", None) |
|
if attr is not None: |
|
attr.data = attr.data.to(dtype) |
|
|
|
if isinstance(l, VisionTransformer): |
|
|
|
attr = getattr(l, "proj", None) |
|
if attr is not None: |
|
attr.data = attr.data.to(dtype) |
|
|
|
model.apply(_convert_weights) |
|
|
|
|
|
convert_weights_to_fp16 = convert_weights_to_lp |
|
|
|
|
|
|
|
def convert_to_custom_text_state_dict(state_dict: dict): |
|
if 'text_projection' in state_dict: |
|
|
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
if any(k.startswith(p) for p in ( |
|
'text_projection', |
|
'positional_embedding', |
|
'token_embedding', |
|
'transformer', |
|
'ln_final', |
|
)): |
|
k = 'text.' + k |
|
new_state_dict[k] = v |
|
return new_state_dict |
|
return state_dict |
|
|
|
|
|
def build_model_from_openai_state_dict( |
|
state_dict: dict, |
|
quick_gelu=True, |
|
cast_dtype=torch.float16, |
|
): |
|
vit = "visual.proj" in state_dict |
|
|
|
if vit: |
|
vision_width = state_dict["visual.conv1.weight"].shape[0] |
|
vision_layers = len( |
|
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) |
|
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] |
|
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) |
|
image_size = vision_patch_size * grid_size |
|
else: |
|
counts: list = [ |
|
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] |
|
vision_layers = tuple(counts) |
|
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] |
|
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) |
|
vision_patch_size = None |
|
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] |
|
image_size = output_width * 32 |
|
|
|
embed_dim = state_dict["text_projection"].shape[1] |
|
context_length = state_dict["positional_embedding"].shape[0] |
|
vocab_size = state_dict["token_embedding.weight"].shape[0] |
|
transformer_width = state_dict["ln_final.weight"].shape[0] |
|
transformer_heads = transformer_width // 64 |
|
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) |
|
|
|
vision_cfg = CLIPVisionCfg( |
|
layers=vision_layers, |
|
width=vision_width, |
|
patch_size=vision_patch_size, |
|
image_size=image_size, |
|
) |
|
text_cfg = CLIPTextCfg( |
|
context_length=context_length, |
|
vocab_size=vocab_size, |
|
width=transformer_width, |
|
heads=transformer_heads, |
|
layers=transformer_layers, |
|
) |
|
model = CLIP( |
|
embed_dim, |
|
vision_cfg=vision_cfg, |
|
text_cfg=text_cfg, |
|
quick_gelu=quick_gelu, |
|
cast_dtype=cast_dtype, |
|
) |
|
|
|
for key in ["input_resolution", "context_length", "vocab_size"]: |
|
state_dict.pop(key, None) |
|
|
|
convert_weights_to_fp16(model) |
|
model.load_state_dict(state_dict) |
|
return model.eval() |
|
|
|
|
|
def trace_model(model, batch_size=256, device=torch.device('cpu')): |
|
model.eval() |
|
image_size = model.visual.image_size |
|
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) |
|
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) |
|
model = torch.jit.trace_module( |
|
model, |
|
inputs=dict( |
|
forward=(example_images, example_text), |
|
encode_text=(example_text,), |
|
encode_image=(example_images,) |
|
)) |
|
model.visual.image_size = image_size |
|
return model |
|
|
|
|
|
def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True): |
|
|
|
old_pos_embed = state_dict.get('visual.positional_embedding', None) |
|
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): |
|
return |
|
grid_size = to_2tuple(model.visual.grid_size) |
|
extra_tokens = 1 |
|
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens |
|
if new_seq_len == old_pos_embed.shape[0]: |
|
return |
|
|
|
if extra_tokens: |
|
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] |
|
else: |
|
pos_emb_tok, pos_emb_img = None, old_pos_embed |
|
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) |
|
|
|
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) |
|
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) |
|
pos_emb_img = F.interpolate( |
|
pos_emb_img, |
|
size=grid_size, |
|
mode=interpolation, |
|
antialias=antialias, |
|
align_corners=False, |
|
) |
|
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] |
|
if pos_emb_tok is not None: |
|
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) |
|
else: |
|
new_pos_embed = pos_emb_img |
|
state_dict['visual.positional_embedding'] = new_pos_embed |
|
|