import os from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_google_genai import GoogleGenerativeAIEmbeddings import streamlit as st import google.generativeai as genai from langchain.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv load_dotenv() os.getenv("GOOGLE_API_KEY") genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) DEFAULT_PDF_FILES = ["2024_25_Annex_Budget.pdf", "2024_25_Budget_Speech.pdf"] # Define default PDFs # read all pdf files and return text def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text # split text into chunks def get_text_chunks(text): splitter = RecursiveCharacterTextSplitter( chunk_size=10000, chunk_overlap=1000) chunks = splitter.split_text(text) return chunks # list of strings # get embeddings for each chunk def get_vector_store(chunks): embeddings = GoogleGenerativeAIEmbeddings( model="models/embedding-001") # type: ignore vector_store = FAISS.from_texts(chunks, embedding=embeddings) vector_store.save_local("faiss_index") def get_conversational_chain(): prompt_template = """ You an economist.Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-1.5-flash", client=genai, temperature=0.3, ) prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain = load_qa_chain(llm=model, chain_type="stuff", prompt=prompt) return chain def clear_chat_history(): st.session_state.messages = [ {"role": "assistant", "content": "upload some pdfs and ask me a question"}] def user_input(user_question): embeddings = GoogleGenerativeAIEmbeddings( model="models/embedding-001") # type: ignore new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain( {"input_documents": docs, "question": user_question}, return_only_outputs=True, ) print(response) return response def main(): st.set_page_config( page_title="Gemini PDF Chatbot", page_icon="🤖" ) # Sidebar for uploading PDF files with st.sidebar: st.title("Menu:") pdf_docs = st.file_uploader( "Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) if st.button("Submit & Process"): with st.spinner("Processing..."): for file_name in pdf_docs: if not os.path.exists(file_name): st.error(f"Default file '{file_name}' not found!") return # Exit if a default file is missing raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Done") # Main content area for displaying chat messages st.title("Chat with the Budget 2024-2025 using Gemini🤖") st.write("Welcome to the Budget 2024-2025 chatbot!") st.sidebar.button('Clear Chat History', on_click=clear_chat_history) # Chat input # Placeholder for chat messages if "messages" not in st.session_state.keys(): st.session_state.messages = [ {"role": "assistant", "content": "upload some pdfs and ask me a question"}] for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) if prompt := st.chat_input(): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.write(prompt) # Display chat messages and bot response if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): response = user_input(prompt) placeholder = st.empty() full_response = '' for item in response['output_text']: full_response += item placeholder.markdown(full_response) placeholder.markdown(full_response) if response is not None: message = {"role": "assistant", "content": full_response} st.session_state.messages.append(message) if __name__ == "__main__": main()