Spaces:
Runtime error
Runtime error
#Reference : https://medium.com/@tahreemrasul/building-a-chatbot-application-with-chainlit-and-langchain-3e86da0099a6 | |
from langchain_openai import ChatOpenAI | |
from langchain.chains import LLMChain | |
from prompts import maths_assistant_prompt_template | |
from langchain.memory.buffer import ConversationBufferMemory | |
from dotenv import load_dotenv | |
import os | |
import chainlit as cl | |
# Load environment variables from .env file | |
load_dotenv() | |
async def start_llm(): | |
llm = ChatOpenAI(model='gpt-4o-mini', | |
temperature=0.5) | |
conversation_memory = ConversationBufferMemory(memory_key="chat_history", | |
max_len=50, | |
return_messages=True, | |
) | |
llm_chain = LLMChain(llm=llm, prompt=maths_assistant_prompt_template, memory=conversation_memory) | |
cl.user_session.set("llm_chain", llm_chain) | |
#Send initial message to the user | |
#await cl.Message("What is your topic of interest?").send() | |
# Send initial message with selectable buttons | |
actions = [ | |
cl.Action(name="Probability", value="Probability", description="Select Quiz Topic!"), | |
cl.Action(name="Linear Algebra", value="Linear Algebra", description="Select Quiz Topic!"), | |
cl.Action(name="Accounts", value="Accounts", description="Select Quiz Topic!"), | |
cl.Action(name="Calculus", value="Calculus", description="Select Quiz Topic!") | |
] | |
await cl.Message(content="**Pick a Topic and Let the Quiz Adventure Begin!** ππ", actions=actions).send() | |
async def query_llm(message: cl.Message): | |
llm_chain = cl.user_session.get("llm_chain") | |
#selected_topic = cl.user_session.get("selected_topic", "probability") # Default to probability if not set | |
print("Message being sent to the LLM is") | |
print(message.content) | |
#response = await llm_chain.ainvoke(message.content, | |
# callbacks=[ | |
# cl.AsyncLangchainCallbackHandler()]) | |
response = await llm_chain.ainvoke({ | |
"chat_history": llm_chain.memory.load_memory_variables({})["chat_history"], | |
"question": message.content | |
}, callbacks=[ | |
cl.AsyncLangchainCallbackHandler() | |
]) | |
await cl.Message(response["text"]).send() | |
async def send_good_luck_message(): | |
await cl.Message(content="Good luck! π", align="bottom").send() | |
async def handle_topic_selection(action: cl.Action): | |
llm_chain = cl.user_session.get("llm_chain") | |
#cl.user_session.set("selected_topic", action.value) | |
#await cl.Message(content=f"Selected {action.value}").send() | |
response = await llm_chain.ainvoke({ | |
"chat_history": llm_chain.memory.load_memory_variables({})["chat_history"], | |
"question": f"Quiz me on the topic {action.value}." | |
}, callbacks=[ | |
cl.AsyncLangchainCallbackHandler() | |
]) | |
await cl.Message(response["text"]).send() | |
async def on_action(action: cl.Action): | |
await handle_topic_selection(action) | |
async def on_action(action: cl.Action): | |
await handle_topic_selection(action) | |
async def on_action(action: cl.Action): | |
await handle_topic_selection(action) | |
async def on_action(action: cl.Action): | |
await handle_topic_selection(action) | |