fm / app.py
shlomihod
switch together to openai api
874ee5e
"""Prompter."""
import asyncio
import importlib
import logging
import os
import string
import sys
import aiohttp
import cohere
import numpy as np
import pandas as pd
import streamlit as st
from datasets import load_dataset
from datasets.tasks.text_classification import ClassLabel
from huggingface_hub import AsyncInferenceClient, dataset_info, model_info
from huggingface_hub.utils import (
HfHubHTTPError,
HFValidationError,
RepositoryNotFoundError,
)
from imblearn.under_sampling import RandomUnderSampler
from sklearn.metrics import (
ConfusionMatrixDisplay,
accuracy_score,
balanced_accuracy_score,
confusion_matrix,
matthews_corrcoef,
)
from sklearn.model_selection import StratifiedShuffleSplit
from spacy.lang.en import English
from tenacity import retry, stop_after_attempt, wait_random_exponential
from transformers import pipeline
HOW_OPENAI_INITIATED = None
LOGGER = logging.getLogger(__name__)
TITLE = "Prompter"
OPENAI_API_KEY = st.secrets.get("openai_api_key", None)
TOGETHER_API_KEY = st.secrets.get("together_api_key", None)
HF_TOKEN = st.secrets.get("hf_token", None)
COHERE_API_KEY = st.secrets.get("cohere_api_key", None)
AZURE_OPENAI_KEY = st.secrets.get("azure_openai_key", None)
AZURE_OPENAI_ENDPOINT = st.secrets.get("azure_openai_endpoint", None)
AZURE_DEPLOYMENT_NAME = st.secrets.get("azure_deployment_name", None)
HF_MODEL = os.environ.get("FM_MODEL", "")
HF_DATASET = os.environ.get("FM_HF_DATASET", "")
DATASET_SPLIT_SEED = os.environ.get("FM_DATASET_SPLIT_SEED", "")
TRAIN_SIZE = 15
TEST_SIZE = 25
BALANCING = True
RETRY_MIN_WAIT = 1
RETRY_MAX_WAIT = 60
RETRY_MAX_ATTEMPTS = 6
PROMPT_TEXT_HEIGHT = 300
UNKNOWN_LABEL = "Unknown"
SEARCH_ROW_DICT = {"First": 0, "Last": -1}
# TODO: Change start temperature to 0.0 when HF supports it
GENERATION_CONFIG_PARAMS = {
"temperature": {
"NAME": "Temperature",
"START": 0.1,
"END": 5.0,
"DEFAULT": 1.0,
"STEP": 0.1,
"SAMPLING": True,
},
"top_k": {
"NAME": "Top K",
"START": 0,
"END": 100,
"DEFAULT": 0,
"STEP": 10,
"SAMPLING": True,
},
"top_p": {
"NAME": "Top P",
"START": 0.1,
"END": 1.0,
"DEFAULT": 1.0,
"STEP": 0.1,
"SAMPLING": True,
},
"max_new_tokens": {
"NAME": "Max New Tokens",
"START": 16,
"END": 1024,
"DEFAULT": 16,
"STEP": 16,
"SAMPLING": False,
},
"do_sample": {
"NAME": "Sampling",
"DEFAULT": False,
},
"stop_sequences": {
"NAME": "Stop Sequences",
"DEFAULT": os.environ.get("FM_STOP_SEQUENCES", "").split(),
"SAMPLING": False,
},
}
GENERATION_CONFIG_DEFAULTS = {
key: value["DEFAULT"] for key, value in GENERATION_CONFIG_PARAMS.items()
}
st.set_page_config(page_title=TITLE, initial_sidebar_state="collapsed")
def get_processing_tokenizer():
return English().tokenizer
PROCESSING_TOKENIZER = get_processing_tokenizer()
class OpenAIAlreadyInitiatedError(Exception):
"""OpenAIAlreadyInitiatedError."""
pass
def prepare_huggingface_generation_config(generation_config):
generation_config = generation_config.copy()
# Reference for decoding stratagies:
# https://huggingface.co/docs/transformers/generation_strategies
# `text_generation_interface`
# Currenly supports only `greedy` amd `sampling` decoding strategies
# Following , we add `do_sample` if any of the other
# samling related parameters are set
# https://github.com/huggingface/text-generation-inference/blob/e943a294bca239e26828732dd6ab5b6f95dadd0a/server/text_generation_server/utils/tokens.py#L46
# `transformers`
# According to experimentations, it seems that `transformers` behave similarly
# I'm not sure what is the right behavior here, but it is better to be explicit
for name, params in GENERATION_CONFIG_PARAMS.items():
# Checking for START to examine the a slider parameters only
if (
"START" in params
and params["SAMPLING"]
and name in generation_config
and generation_config[name] is not None
):
if generation_config[name] == params["DEFAULT"]:
generation_config[name] = None
else:
assert generation_config["do_sample"]
# TODO: refactor this part
if generation_config["is_chat"]:
generation_config["max_tokens"] = generation_config.pop("max_new_tokens")
generation_config["stop"] = generation_config.pop("stop_sequences")
del generation_config["do_sample"]
del generation_config["top_k"]
is_chat = generation_config.pop("is_chat")
return generation_config, is_chat
def escape_markdown(text):
escape_dict = {
"*": r"\*",
"_": r"\_",
"{": r"\{",
"}": r"\}",
"[": r"\[",
"]": r"\]",
"(": r"\(",
")": r"\)",
"+": r"\+",
"-": r"\-",
".": r"\.",
"!": r"\!",
"`": r"\`",
">": r"\>",
"|": r"\|",
"#": r"\#",
}
return "".join([escape_dict.get(c, c) for c in text])
def reload_module(name):
if name in sys.modules:
del sys.modules[name]
return importlib.import_module(name)
def build_api_call_function(model):
global HOW_OPENAI_INITIATED
if any(
model.startswith(known_providers)
for known_providers in ("openai", "azure", "together")
):
provider, model = model.split("/", maxsplit=1)
if provider == "openai":
from openai import AsyncOpenAI
aclient = AsyncOpenAI(api_key=OPENAI_API_KEY)
elif provider == "azure":
from openai import AsyncAzureOpenAI
aclient = AsyncAzureOpenAI(
# https://learn.microsoft.com/azure/ai-services/openai/reference#rest-api-versioning
api_version="2023-07-01-preview",
# https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource
azure_endpoint=AZURE_OPENAI_ENDPOINT,
)
elif provider == "together":
from openai import AsyncOpenAI
aclient = AsyncOpenAI(
api_key=TOGETHER_API_KEY, base_url="https://api.together.xyz/v1"
)
if provider in ("openai", "azure"):
async def list_models():
return [model async for model in aclient.models.list()]
openai_models = {model_obj.id for model_obj in asyncio.run(list_models())}
assert model in openai_models
@retry(
wait=wait_random_exponential(min=RETRY_MIN_WAIT, max=RETRY_MAX_WAIT),
stop=stop_after_attempt(RETRY_MAX_ATTEMPTS),
reraise=True,
)
async def api_call_function(prompt, generation_config):
temperature = (
generation_config["temperature"]
if generation_config["do_sample"]
else 0
)
top_p = generation_config["top_p"] if generation_config["do_sample"] else 1
max_tokens = generation_config["max_new_tokens"]
if (
model.startswith("gpt") and "instruct" not in model
) or provider == "together":
response = await aclient.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
)
assert response.choices[0].message.role == "assistant"
output = response.choices[0].message.content
else:
response = await aclient.completions.create(
model=model,
prompt=prompt,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
)
output = response.choices[0].text
try:
length = response.usage.total_tokens
except AttributeError:
length = None
return output, length
elif model.startswith("cohere"):
_, model = model.split("/")
@retry(
wait=wait_random_exponential(min=RETRY_MIN_WAIT, max=RETRY_MAX_WAIT),
stop=stop_after_attempt(RETRY_MAX_ATTEMPTS),
reraise=True,
)
async def api_call_function(prompt, generation_config):
async with cohere.AsyncClient(COHERE_API_KEY) as co:
response = await co.generate(
model=model,
prompt=prompt,
temperature=generation_config["temperature"]
if generation_config["do_sample"]
else 0,
p=generation_config["top_p"]
if generation_config["do_sample"]
else 1,
k=generation_config["top_k"]
if generation_config["do_sample"]
else 0,
max_tokens=generation_config["max_new_tokens"],
end_sequences=generation_config["stop_sequences"],
)
output = response.generations[0].text
length = None
return output, length
elif model.startswith("@"):
model = model[1:]
pipe = pipeline(
"text-generation", model=model, trust_remote_code=True, device_map="auto"
)
async def api_call_function(prompt, generation_config):
generation_config, _ = prepare_huggingface_generation_config(
generation_config
)
# TODO: include chat
output = pipe(prompt, return_text=True, **generation_config)[0][
"generated_text"
]
output = output[len(prompt) :]
length = None
return output, length
else:
@retry(
wait=wait_random_exponential(min=RETRY_MIN_WAIT, max=RETRY_MAX_WAIT),
stop=stop_after_attempt(RETRY_MAX_ATTEMPTS),
reraise=True,
)
async def api_call_function(prompt, generation_config):
hf_client = AsyncInferenceClient(token=HF_TOKEN, model=model)
generation_config, is_chat = prepare_huggingface_generation_config(
generation_config
)
if is_chat:
messages = [{"role": "user", "content": prompt}]
response = await hf_client.chat_completion(
messages, stream=False, **generation_config
)
output = response.choices[0].message.content
length = None
else:
response = await hf_client.text_generation(
prompt, stream=False, details=True, **generation_config
)
length = (
len(response.details.prefill) + len(response.details.tokens)
if response.details is not None
else None
)
output = response.generated_text
# TODO: refactor to support stop of chats
# Remove stop sequences from the output
# Inspired by
# https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/inference.py
# https://huggingface.co/spaces/tiiuae/falcon-chat/blob/main/app.py
if (
"stop_sequences" in generation_config
and generation_config["stop_sequences"] is not None
):
for stop_sequence in generation_config["stop_sequences"]:
output = output.rsplit(stop_sequence, maxsplit=1)[0]
return output, length
return api_call_function
def strip_newline_space(text):
return text.strip("\n").strip()
def normalize(text):
return strip_newline_space(text).lower().capitalize()
def prepare_datasets(
dataset_name,
take_split="train",
train_size=TRAIN_SIZE,
test_size=TEST_SIZE,
balancing=BALANCING,
dataset_split_seed=None,
):
try:
ds = load_dataset(dataset_name, trust_remote_code=True)
except FileNotFoundError as e:
try:
assert "/" in dataset_name
dataset_name, subset_name = dataset_name.rsplit("/", 1)
ds = load_dataset(dataset_name, subset_name, trust_remote_code=True)
except (FileNotFoundError, AssertionError):
st.error(f"Dataset `{dataset_name}` not found.")
st.stop()
label_columns = [
(name, info)
for name, info in ds["train"].features.items()
if isinstance(info, ClassLabel)
]
assert len(label_columns) == 1
label_column, label_column_info = label_columns[0]
labels = [normalize(label) for label in label_column_info.names]
label_dict = dict(enumerate(labels))
if any(len(PROCESSING_TOKENIZER(label)) > 1 for label in labels):
st.error(
"Labels are not single words. "
"Matching labels won't not work as expected."
)
original_input_columns = [
name
for name, info in ds["train"].features.items()
if not isinstance(info, ClassLabel) and info.dtype == "string"
]
input_columns = []
for input_column in original_input_columns:
lowered_input_column = input_column.lower()
if input_column != lowered_input_column:
ds = ds.rename_column(input_column, lowered_input_column)
input_columns.append(lowered_input_column)
df = ds[take_split].to_pandas()
for input_column in input_columns:
df[input_column] = df[input_column].apply(strip_newline_space)
df[label_column] = df[label_column].replace(label_dict)
df = df[[label_column] + input_columns]
if train_size is not None and test_size is not None:
undersample = RandomUnderSampler(
sampling_strategy="not minority", random_state=dataset_split_seed
)
df, df[label_column] = undersample.fit_resample(df, df[label_column])
sss = StratifiedShuffleSplit(
n_splits=1,
train_size=train_size,
test_size=test_size,
random_state=dataset_split_seed,
)
train_index, test_index = next(iter(sss.split(df, df[label_column])))
train_df = df.iloc[train_index]
test_df = df.iloc[test_index]
dfs = {"train": train_df, "test": test_df}
else:
dfs = {take_split: df}
return dataset_name, dfs, input_columns, label_column, labels
async def complete(api_call_function, prompt, generation_config=None):
if generation_config is None:
generation_config = {}
LOGGER.info(f"API Call\n\n``{prompt}``\n\n{generation_config=}")
output, length = await api_call_function(prompt, generation_config)
return output, length
async def infer(api_call_function, prompt_template, inputs, generation_config=None):
prompt = prompt_template.format(**inputs)
output, length = await complete(api_call_function, prompt, generation_config)
return output, prompt, length
async def infer_multi(
api_call_function, prompt_template, inputs_df, generation_config=None
):
results = await asyncio.gather(
*(
infer(
api_call_function, prompt_template, inputs.to_dict(), generation_config
)
for _, inputs in inputs_df.iterrows()
)
)
return zip(*results)
def preprocess_output_line(text):
return [
normalize(token_str)
for token in PROCESSING_TOKENIZER(text)
if (token_str := str(token))
]
# Inspired by OpenAI depcriated classification endpoint API
# They take the label from the first line of the output
# https://github.com/openai/openai-cookbook/blob/main/transition_guides_for_deprecated_API_endpoints/classification_functionality_example.py
# https://help.openai.com/en/articles/6272941-classifications-transition-guide#h_e63b71a5c8
# Here we take the label from either the *first* or *last* (for CoT) line of the output
# This is not very robust, but it's a start that doesn't requires asking for a structured output such as JSON
# HELM has more robust processing options, we are not using them, but these are the references:
# https://github.com/stanford-crfm/helm/blob/04a75826ce75835f6d22a7d41ae1487104797964/src/helm/benchmark/metrics/classification_metrics.py
# https://github.com/stanford-crfm/helm/blob/04a75826ce75835f6d22a7d41ae1487104797964/src/helm/benchmark/metrics/basic_metrics.py
def canonize_label(output, annotation_labels, search_row):
assert search_row in SEARCH_ROW_DICT.keys()
search_row_index = SEARCH_ROW_DICT[search_row]
annotation_labels_set = set(annotation_labels)
output_lines = strip_newline_space(output).split("\n")
output_search_words = preprocess_output_line(output_lines[search_row_index])
label_matches = set(output_search_words) & annotation_labels_set
if len(label_matches) == 1:
return next(iter(label_matches))
else:
return UNKNOWN_LABEL
def measure(dataset, outputs, labels, label_column, input_columns, search_row):
inferences = [canonize_label(output, labels, search_row) for output in outputs]
LOGGER.info(f"{inferences=}")
LOGGER.info(f"{labels=}")
inference_labels = labels + [UNKNOWN_LABEL]
evaluation_df = pd.DataFrame(
{
"hit/miss": np.where(dataset[label_column] == inferences, "hit", "miss"),
"annotation": dataset[label_column],
"inference": inferences,
"output": outputs,
}
| dataset[input_columns].to_dict("list")
)
unknown_proportion = (evaluation_df["inference"] == UNKNOWN_LABEL).mean()
acc = accuracy_score(evaluation_df["annotation"], evaluation_df["inference"])
bacc = balanced_accuracy_score(
evaluation_df["annotation"], evaluation_df["inference"]
)
mcc = matthews_corrcoef(evaluation_df["annotation"], evaluation_df["inference"])
cm = confusion_matrix(
evaluation_df["annotation"], evaluation_df["inference"], labels=inference_labels
)
cm_display = ConfusionMatrixDisplay(cm, display_labels=inference_labels)
cm_display.plot()
cm_display.ax_.set_xlabel("Inference Labels")
cm_display.ax_.set_ylabel("Annotation Labels")
cm_display.figure_.autofmt_xdate(rotation=45)
metrics = {
"unknown_proportion": unknown_proportion,
"accuracy": acc,
"balanced_accuracy": bacc,
"mcc": mcc,
"confusion_matrix": cm,
"confusion_matrix_display": cm_display.figure_,
"hit_miss": evaluation_df,
"annotation_labels": labels,
"inference_labels": inference_labels,
}
return metrics
def run_evaluation(
api_call_function,
prompt_template,
dataset,
labels,
label_column,
input_columns,
search_row,
generation_config=None,
):
inputs_df = dataset[input_columns]
outputs, prompts, lengths = asyncio.run(
infer_multi(
api_call_function,
prompt_template,
inputs_df,
generation_config,
)
)
metrics = measure(dataset, outputs, labels, label_column, input_columns, search_row)
metrics["hit_miss"]["prompt"] = prompts
metrics["hit_miss"]["length"] = lengths
return metrics
def combine_labels(labels):
return "|".join(f"``{label}``" for label in labels)
def main():
try:
if "dataset_split_seed" not in st.session_state:
st.session_state["dataset_split_seed"] = (
int(DATASET_SPLIT_SEED) if DATASET_SPLIT_SEED else None
)
if "train_size" not in st.session_state:
st.session_state["train_size"] = TRAIN_SIZE
if "test_size" not in st.session_state:
st.session_state["test_size"] = TEST_SIZE
if "api_call_function" not in st.session_state:
st.session_state["api_call_function"] = build_api_call_function(
model=HF_MODEL,
)
if "train_dataset" not in st.session_state:
(
st.session_state["dataset_name"],
splits_df,
st.session_state["input_columns"],
st.session_state["label_column"],
st.session_state["labels"],
) = prepare_datasets(
HF_DATASET,
train_size=st.session_state.train_size,
test_size=st.session_state.test_size,
dataset_split_seed=st.session_state.dataset_split_seed,
)
for split in splits_df:
st.session_state[f"{split}_dataset"] = splits_df[split]
if "generation_config" not in st.session_state:
st.session_state["generation_config"] = GENERATION_CONFIG_DEFAULTS
except Exception as e:
st.error(e)
st.title(TITLE)
with st.sidebar:
with st.form("model_form"):
model = st.text_input("Model", HF_MODEL).strip()
# Defautlt values from:
# https://huggingface.co/docs/transformers/v4.30.0/main_classes/text_generation
# Edges values from:
# https://docs.cohere.com/reference/generate
# https://platform.openai.com/playground
generation_config_sliders = {
name: st.slider(
params["NAME"],
params["START"],
params["END"],
params["DEFAULT"],
params["STEP"],
)
for name, params in GENERATION_CONFIG_PARAMS.items()
if "START" in params
}
do_sample = st.checkbox(
GENERATION_CONFIG_PARAMS["do_sample"]["NAME"],
value=GENERATION_CONFIG_PARAMS["do_sample"]["DEFAULT"],
)
stop_sequences = st.text_area(
GENERATION_CONFIG_PARAMS["stop_sequences"]["NAME"],
value="\n".join(GENERATION_CONFIG_PARAMS["stop_sequences"]["DEFAULT"]),
)
stop_sequences = [
clean_stop.encode().decode("unicode_escape") # interpret \n as newline
for stop in stop_sequences.split("\n")
if (clean_stop := stop.strip())
]
if not stop_sequences:
stop_sequences = None
decoding_seed = st.text_input("Decoding Seed").strip()
st.divider()
dataset = st.text_input("Dataset", HF_DATASET).strip()
train_size = st.number_input("Train Size", value=TRAIN_SIZE, min_value=10)
test_size = st.number_input("Test Size", value=TEST_SIZE, min_value=10)
balancing = st.checkbox("Balancing", BALANCING)
dataset_split_seed = st.text_input(
"Dataset Split Seed", DATASET_SPLIT_SEED
).strip()
st.divider()
submitted = st.form_submit_button("Set")
if submitted:
if not dataset:
st.error("Dataset must be specified.")
st.stop()
if not model:
st.error("Model must be specified.")
st.stop()
if not decoding_seed:
decoding_seed = None
elif seed.isnumeric():
decoding_seed = int(seed)
else:
st.error("Seed must be numeric or empty.")
st.stop()
generation_confing_slider_sampling = {
name: value
for name, value in generation_config_sliders.items()
if GENERATION_CONFIG_PARAMS[name]["SAMPLING"]
}
if (
any(
value != GENERATION_CONFIG_DEFAULTS[name]
for name, value in generation_confing_slider_sampling.items()
)
and not do_sample
):
sampling_slider_default_values_info = " | ".join(
f"{name}={GENERATION_CONFIG_DEFAULTS[name]}"
for name in generation_confing_slider_sampling
)
st.error(
f"Sampling must be enabled to use non default values for generation parameters: {sampling_slider_default_values_info}"
)
st.stop()
if decoding_seed is not None and not do_sample:
st.error(
"Sampling must be enabled to use a decoding seed. Otherwise, the seed field should be empty."
)
st.stop()
if not dataset_split_seed:
dataset_split_seed = None
elif dataset_split_seed.isnumeric():
dataset_split_seed = int(dataset_split_seed)
else:
st.error("Dataset split seed must be numeric or empty.")
st.stop()
generation_config = generation_config_sliders | dict(
do_sample=do_sample,
stop_sequences=stop_sequences,
seed=decoding_seed,
)
st.session_state["dataset_split_seed"] = dataset_split_seed
st.session_state["train_size"] = train_size
st.session_state["test_size"] = test_size
try:
st.session_state["api_call_function"] = build_api_call_function(
model=model,
)
except OpenAIAlreadyInitiatedError as e:
st.error(e)
st.stop()
st.session_state["generation_config"] = generation_config
(
st.session_state["dataset_name"],
splits_df,
st.session_state["input_columns"],
st.session_state["label_column"],
st.session_state["labels"],
) = prepare_datasets(
dataset,
train_size=st.session_state.train_size,
test_size=st.session_state.test_size,
balancing=balancing,
dataset_split_seed=st.session_state.dataset_split_seed,
)
for split in splits_df:
st.session_state[f"{split}_dataset"] = splits_df[split]
LOGGER.info(f"FORM {dataset=}")
LOGGER.info(f"FORM {model=}")
LOGGER.info(f"FORM {generation_config=}")
with st.expander("Info"):
try:
data_card = dataset_info(st.session_state.dataset_name).cardData
except (HFValidationError, RepositoryNotFoundError):
pass
else:
st.caption("Dataset")
st.write(data_card)
try:
model_info_respose = model_info(model)
model_card = model_info_respose.cardData
st.session_state["generation_config"]["is_chat"] = (
"conversational" in model_info_respose.tags
)
except (HFValidationError, RepositoryNotFoundError):
pass
else:
st.caption("Model")
st.write(model_card)
# st.write(f"Model max length: {AutoTokenizer.from_pretrained(model).model_max_length}")
tab1, tab2, tab3 = st.tabs(["Evaluation", "Examples", "Playground"])
with tab1:
with st.form("prompt_form"):
prompt_template = st.text_area("Prompt Template", height=PROMPT_TEXT_HEIGHT)
is_multi_placeholder = len(st.session_state.input_columns) > 1
st.write(
f"To determine the inferred label of an input, the model should output one of the following words:"
f" {combine_labels(st.session_state.labels)}"
)
st.write(
f"The input placeholder{'s' if is_multi_placeholder else ''} available for the prompt template {'are' if is_multi_placeholder else 'is'}:"
f" {combine_labels(f'{{{col}}}' for col in st.session_state.input_columns)}"
)
col1, col2 = st.columns(2)
with col1:
search_row = st.selectbox(
"Search label at which row", list(SEARCH_ROW_DICT)
)
with col2:
submitted = st.form_submit_button("Evaluate")
if submitted:
if not prompt_template:
st.error("Prompt template must be specified.")
st.stop()
_, formats, *_ = zip(*string.Formatter().parse(prompt_template))
is_valid_prompt_template = set(formats).issubset(
{None} | set(st.session_state.input_columns)
)
if not is_valid_prompt_template:
st.error(f"The prompt template contains unrecognized fields.")
st.stop()
with st.spinner("Executing inference..."):
try:
evaluation = run_evaluation(
st.session_state.api_call_function,
prompt_template,
st.session_state.test_dataset,
st.session_state.labels,
st.session_state.label_column,
st.session_state.input_columns,
search_row,
st.session_state.generation_config,
)
except HfHubHTTPError as e:
st.error(e)
st.stop()
st.markdown("### Metrics")
num_metric_cols = 2 if balancing else 4
cols = st.columns(num_metric_cols)
with cols[0]:
st.metric("Accuracy", f"{100 * evaluation['accuracy']:.0f}%")
st.caption("The percentage of correct inferences.")
with cols[1]:
st.metric(
"Unknown",
f"{100 * evaluation['unknown_proportion']:.0f}%",
)
st.caption(
"The percentage of inferences"
" that could not be determined based on the model output."
)
if not balancing:
with cols[2]:
st.metric(
"Balanced Accuracy",
f"{100 * evaluation['balanced_accuracy']:.0f}%",
)
with cols[3]:
st.metric("MCC", f"{evaluation['mcc']:.2f}")
st.markdown("### Detailed Evaluation")
st.caption(
"This table showcases all examples (input and output pairs) that were leveraged for the evaluation of the prompt template with the model (for instance, accuracy)."
" It comprises the input placeholder values, the unmodified model *output*, the deduced *inference*, and the ground-truth *annotation*."
)
st.caption(
"A 'hit' signifies a correct inference (when *inference* coincides with *annotation*), while a 'miss' denotes an incorrect inference."
" If the *inference* cannot be determined based on the model output, it is labeled as 'unknown'."
)
st.caption(
"The *prompt* column features the complete prompt that the model was prompted to complete, i.e., your prompt template filled with the input placeholders you have used."
)
st.caption(
"You are not allowed to include these examples in your prompt template."
)
st.dataframe(evaluation["hit_miss"])
with st.expander("Additional Information", expanded=False):
st.markdown("## Confusion Matrix")
st.pyplot(evaluation["confusion_matrix_display"])
if evaluation["accuracy"] == 1:
st.balloons()
with tab2:
st.caption(
"You can include the following examples in your prompt template for few-shot prompting."
)
st.dataframe(st.session_state.train_dataset)
with tab3:
prompt = st.text_area("Prompt", height=PROMPT_TEXT_HEIGHT)
submitted = st.button("Complete")
if submitted:
if not prompt:
st.error("Prompt must be specified.")
st.stop()
with st.spinner("Generating..."):
try:
output, length = asyncio.run(
complete(
st.session_state.api_call_function,
prompt,
st.session_state.generation_config,
)
)
except HfHubHTTPError as e:
st.error(e)
st.stop()
st.markdown(escape_markdown(output))
if length is not None:
with st.expander("Stats"):
st.metric("#Tokens", length)
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()