Kevin Fink
commited on
Commit
·
069bfa6
1
Parent(s):
67bab65
dev
Browse files- app (copy).py +0 -179
- app.py +84 -42
app (copy).py
DELETED
@@ -1,179 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
-
from transformers import DataCollatorForSeq2Seq
|
5 |
-
from datasets import load_dataset, concatenate_datasets, load_from_disk
|
6 |
-
import traceback
|
7 |
-
from sklearn.metrics import accuracy_score
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
|
11 |
-
import os
|
12 |
-
from huggingface_hub import login
|
13 |
-
from peft import get_peft_model, LoraConfig
|
14 |
-
|
15 |
-
#os.environ['HF_HOME'] = '/data/.huggingface'
|
16 |
-
|
17 |
-
@spaces.GPU(duration=120)
|
18 |
-
def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
19 |
-
try:
|
20 |
-
torch.cuda.empty_cache()
|
21 |
-
def compute_metrics(eval_pred):
|
22 |
-
logits, labels = eval_pred
|
23 |
-
predictions = np.argmax(logits, axis=1)
|
24 |
-
accuracy = accuracy_score(labels, predictions)
|
25 |
-
return {
|
26 |
-
'eval_accuracy': accuracy,
|
27 |
-
'eval_loss': eval_pred.loss, # If you want to include loss as well
|
28 |
-
}
|
29 |
-
login(api_key.strip())
|
30 |
-
lora_config = LoraConfig(
|
31 |
-
r=16, # Rank of the low-rank adaptation
|
32 |
-
lora_alpha=32, # Scaling factor
|
33 |
-
lora_dropout=0.1, # Dropout for LoRA layers
|
34 |
-
bias="none" # Bias handling
|
35 |
-
)
|
36 |
-
|
37 |
-
# Load the model and tokenizer
|
38 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2, force_download=True)
|
39 |
-
model.gradient_checkpointing_enable()
|
40 |
-
#model = get_peft_model(model, lora_config)
|
41 |
-
|
42 |
-
|
43 |
-
# Set training arguments
|
44 |
-
training_args = TrainingArguments(
|
45 |
-
output_dir='/data/results',
|
46 |
-
eval_strategy="steps", # Change this to steps
|
47 |
-
save_strategy='steps',
|
48 |
-
learning_rate=lr*0.00001,
|
49 |
-
per_device_train_batch_size=int(batch_size),
|
50 |
-
per_device_eval_batch_size=int(batch_size),
|
51 |
-
num_train_epochs=int(num_epochs),
|
52 |
-
weight_decay=0.01,
|
53 |
-
gradient_accumulation_steps=int(grad),
|
54 |
-
max_grad_norm = 1.0,
|
55 |
-
load_best_model_at_end=True,
|
56 |
-
metric_for_best_model="accuracy",
|
57 |
-
greater_is_better=True,
|
58 |
-
logging_dir='/data/logs',
|
59 |
-
logging_steps=10,
|
60 |
-
#push_to_hub=True,
|
61 |
-
hub_model_id=hub_id.strip(),
|
62 |
-
fp16=True,
|
63 |
-
#lr_scheduler_type='cosine',
|
64 |
-
save_steps=100, # Save checkpoint every 500 steps
|
65 |
-
save_total_limit=3,
|
66 |
-
)
|
67 |
-
# Check if a checkpoint exists and load it
|
68 |
-
if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
|
69 |
-
print("Loading model from checkpoint...")
|
70 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
|
71 |
-
|
72 |
-
max_length = 128
|
73 |
-
try:
|
74 |
-
tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
|
75 |
-
tokenized_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
|
76 |
-
|
77 |
-
# Create Trainer
|
78 |
-
trainer = Trainer(
|
79 |
-
model=model,
|
80 |
-
args=training_args,
|
81 |
-
train_dataset=tokenized_train_dataset,
|
82 |
-
eval_dataset=tokenized_test_dataset,
|
83 |
-
compute_metrics=compute_metrics,
|
84 |
-
#callbacks=[LoggingCallback()],
|
85 |
-
)
|
86 |
-
except:
|
87 |
-
# Load the dataset
|
88 |
-
dataset = load_dataset(dataset_name.strip())
|
89 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
90 |
-
# Tokenize the dataset
|
91 |
-
def tokenize_function(examples):
|
92 |
-
|
93 |
-
# Assuming 'text' is the input and 'target' is the expected output
|
94 |
-
model_inputs = tokenizer(
|
95 |
-
examples['text'],
|
96 |
-
max_length=max_length, # Set to None for dynamic padding
|
97 |
-
padding=True, # Disable padding here, we will handle it later
|
98 |
-
truncation=True,
|
99 |
-
)
|
100 |
-
|
101 |
-
# Setup the decoder input IDs (shifted right)
|
102 |
-
labels = tokenizer(
|
103 |
-
examples['target'],
|
104 |
-
max_length=max_length, # Set to None for dynamic padding
|
105 |
-
padding=True, # Disable padding here, we will handle it later
|
106 |
-
truncation=True,
|
107 |
-
text_target=examples['target'] # Use text_target for target text
|
108 |
-
)
|
109 |
-
|
110 |
-
# Add labels to the model inputs
|
111 |
-
model_inputs["labels"] = labels["input_ids"]
|
112 |
-
return model_inputs
|
113 |
-
|
114 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
115 |
-
|
116 |
-
tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
|
117 |
-
tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
|
118 |
-
|
119 |
-
# Create Trainer
|
120 |
-
trainer = Trainer(
|
121 |
-
model=model,
|
122 |
-
args=training_args,
|
123 |
-
train_dataset=tokenized_datasets['train'],
|
124 |
-
eval_dataset=tokenized_datasets['test'],
|
125 |
-
compute_metrics=compute_metrics,
|
126 |
-
#callbacks=[LoggingCallback()],
|
127 |
-
)
|
128 |
-
|
129 |
-
# Fine-tune the model
|
130 |
-
trainer.train()
|
131 |
-
trainer.push_to_hub(commit_message="Training complete!")
|
132 |
-
except Exception as e:
|
133 |
-
return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
|
134 |
-
return 'DONE!'#model
|
135 |
-
'''
|
136 |
-
# Define Gradio interface
|
137 |
-
def predict(text):
|
138 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
|
139 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
140 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
141 |
-
outputs = model(inputs)
|
142 |
-
predictions = outputs.logits.argmax(dim=-1)
|
143 |
-
return predictions.item()
|
144 |
-
'''
|
145 |
-
# Create Gradio interface
|
146 |
-
try:
|
147 |
-
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8'.strip(), num_labels=2, force_download=True)
|
148 |
-
iface = gr.Interface(
|
149 |
-
fn=fine_tune_model,
|
150 |
-
inputs=[
|
151 |
-
gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
|
152 |
-
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
|
153 |
-
gr.Textbox(label="HF hub to push to after training"),
|
154 |
-
gr.Textbox(label="HF API token"),
|
155 |
-
gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
|
156 |
-
gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1),
|
157 |
-
gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1),
|
158 |
-
gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1),
|
159 |
-
],
|
160 |
-
outputs="text",
|
161 |
-
title="Fine-Tune Hugging Face Model",
|
162 |
-
description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
|
163 |
-
)
|
164 |
-
'''
|
165 |
-
iface = gr.Interface(
|
166 |
-
fn=predict,
|
167 |
-
inputs=[
|
168 |
-
gr.Textbox(label="Query"),
|
169 |
-
],
|
170 |
-
outputs="text",
|
171 |
-
title="Fine-Tune Hugging Face Model",
|
172 |
-
description="This interface allows you to test a fine-tune Hugging Face model."
|
173 |
-
)
|
174 |
-
'''
|
175 |
-
# Launch the interface
|
176 |
-
iface.launch()
|
177 |
-
except Exception as e:
|
178 |
-
print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -4,17 +4,40 @@ from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelFor
|
|
4 |
from transformers import DataCollatorForSeq2Seq
|
5 |
from datasets import load_dataset, concatenate_datasets, load_from_disk
|
6 |
import traceback
|
7 |
-
|
|
|
|
|
8 |
|
9 |
import os
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
@spaces.GPU
|
13 |
def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
14 |
try:
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Load the model and tokenizer
|
17 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
|
|
|
18 |
|
19 |
|
20 |
# Set training arguments
|
@@ -42,48 +65,66 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
42 |
save_total_limit=3,
|
43 |
)
|
44 |
# Check if a checkpoint exists and load it
|
|
|
|
|
|
|
|
|
45 |
max_length = 128
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# Tokenize the dataset
|
50 |
-
def tokenize_function(examples):
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
compute_metrics=compute_metrics,
|
85 |
-
#callbacks=[LoggingCallback()],
|
86 |
-
)
|
87 |
|
88 |
# Fine-tune the model
|
89 |
trainer.train()
|
@@ -103,6 +144,7 @@ def predict(text):
|
|
103 |
'''
|
104 |
# Create Gradio interface
|
105 |
try:
|
|
|
106 |
iface = gr.Interface(
|
107 |
fn=fine_tune_model,
|
108 |
inputs=[
|
|
|
4 |
from transformers import DataCollatorForSeq2Seq
|
5 |
from datasets import load_dataset, concatenate_datasets, load_from_disk
|
6 |
import traceback
|
7 |
+
from sklearn.metrics import accuracy_score
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
|
11 |
import os
|
12 |
+
from huggingface_hub import login
|
13 |
+
from peft import get_peft_model, LoraConfig
|
14 |
|
15 |
+
#os.environ['HF_HOME'] = '/data/.huggingface'
|
16 |
|
17 |
+
@spaces.GPU(duration=120)
|
18 |
def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
19 |
try:
|
20 |
+
torch.cuda.empty_cache()
|
21 |
+
def compute_metrics(eval_pred):
|
22 |
+
logits, labels = eval_pred
|
23 |
+
predictions = np.argmax(logits, axis=1)
|
24 |
+
accuracy = accuracy_score(labels, predictions)
|
25 |
+
return {
|
26 |
+
'eval_accuracy': accuracy,
|
27 |
+
'eval_loss': eval_pred.loss, # If you want to include loss as well
|
28 |
+
}
|
29 |
+
login(api_key.strip())
|
30 |
+
lora_config = LoraConfig(
|
31 |
+
r=16, # Rank of the low-rank adaptation
|
32 |
+
lora_alpha=32, # Scaling factor
|
33 |
+
lora_dropout=0.1, # Dropout for LoRA layers
|
34 |
+
bias="none" # Bias handling
|
35 |
+
)
|
36 |
+
|
37 |
# Load the model and tokenizer
|
38 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2, force_download=True)
|
39 |
+
model.gradient_checkpointing_enable()
|
40 |
+
#model = get_peft_model(model, lora_config)
|
41 |
|
42 |
|
43 |
# Set training arguments
|
|
|
65 |
save_total_limit=3,
|
66 |
)
|
67 |
# Check if a checkpoint exists and load it
|
68 |
+
if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
|
69 |
+
print("Loading model from checkpoint...")
|
70 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
|
71 |
+
|
72 |
max_length = 128
|
73 |
+
try:
|
74 |
+
tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
|
75 |
+
tokenized_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
|
|
|
|
|
76 |
|
77 |
+
# Create Trainer
|
78 |
+
trainer = Trainer(
|
79 |
+
model=model,
|
80 |
+
args=training_args,
|
81 |
+
train_dataset=tokenized_train_dataset,
|
82 |
+
eval_dataset=tokenized_test_dataset,
|
83 |
+
compute_metrics=compute_metrics,
|
84 |
+
#callbacks=[LoggingCallback()],
|
85 |
+
)
|
86 |
+
except:
|
87 |
+
# Load the dataset
|
88 |
+
dataset = load_dataset(dataset_name.strip())
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
90 |
+
# Tokenize the dataset
|
91 |
+
def tokenize_function(examples):
|
92 |
+
|
93 |
+
# Assuming 'text' is the input and 'target' is the expected output
|
94 |
+
model_inputs = tokenizer(
|
95 |
+
examples['text'],
|
96 |
+
max_length=max_length, # Set to None for dynamic padding
|
97 |
+
padding=True, # Disable padding here, we will handle it later
|
98 |
+
truncation=True,
|
99 |
+
)
|
100 |
+
|
101 |
+
# Setup the decoder input IDs (shifted right)
|
102 |
+
labels = tokenizer(
|
103 |
+
examples['target'],
|
104 |
+
max_length=max_length, # Set to None for dynamic padding
|
105 |
+
padding=True, # Disable padding here, we will handle it later
|
106 |
+
truncation=True,
|
107 |
+
text_target=examples['target'] # Use text_target for target text
|
108 |
+
)
|
109 |
+
|
110 |
+
# Add labels to the model inputs
|
111 |
+
model_inputs["labels"] = labels["input_ids"]
|
112 |
+
return model_inputs
|
113 |
|
114 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
115 |
+
|
116 |
+
tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
|
117 |
+
tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
|
118 |
|
119 |
+
# Create Trainer
|
120 |
+
trainer = Trainer(
|
121 |
+
model=model,
|
122 |
+
args=training_args,
|
123 |
+
train_dataset=tokenized_datasets['train'],
|
124 |
+
eval_dataset=tokenized_datasets['test'],
|
125 |
+
compute_metrics=compute_metrics,
|
126 |
+
#callbacks=[LoggingCallback()],
|
127 |
+
)
|
|
|
|
|
|
|
128 |
|
129 |
# Fine-tune the model
|
130 |
trainer.train()
|
|
|
144 |
'''
|
145 |
# Create Gradio interface
|
146 |
try:
|
147 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8'.strip(), num_labels=2, force_download=True)
|
148 |
iface = gr.Interface(
|
149 |
fn=fine_tune_model,
|
150 |
inputs=[
|