Kevin Fink
commited on
Commit
·
138f67f
1
Parent(s):
be630f0
dev
Browse files- app.py +13 -0
- gradio-3.wpu +252 -0
- selenium_click.py +10 -1
app.py
CHANGED
@@ -241,6 +241,19 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
|
|
241 |
int_index = s.find('-')
|
242 |
return int(s[int_index+1:])
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
try:
|
245 |
train_result = trainer.train(resume_from_checkpoint=True)
|
246 |
except Exception as e:
|
|
|
241 |
int_index = s.find('-')
|
242 |
return int(s[int_index+1:])
|
243 |
|
244 |
+
<<<<<<< HEAD
|
245 |
+
=======
|
246 |
+
checkpoint_dir = training_args.output_dir
|
247 |
+
# If the trainer_state.json is missing, look for the previous checkpoint
|
248 |
+
previous_checkpoints = sorted(os.listdir("/data/results"), key=get_checkpoint_int, reverse=True)
|
249 |
+
print(f'CHECKPOINTs: {previous_checkpoints}')
|
250 |
+
for check in previous_checkpoints:
|
251 |
+
try:
|
252 |
+
print(f"Removing previous checkpoint {check}")
|
253 |
+
shutil.rmtree(os.path.join('/data/results', check))
|
254 |
+
except:
|
255 |
+
pass
|
256 |
+
>>>>>>> 35c5766 (dev)
|
257 |
try:
|
258 |
train_result = trainer.train(resume_from_checkpoint=True)
|
259 |
except Exception as e:
|
gradio-3.wpu
CHANGED
@@ -272,7 +272,11 @@ guimgr.overall-gui-state = {'windowing-policy': 'combined-window',
|
|
272 |
'primary_view_state': {'area': 'wide',
|
273 |
'constraint': None,
|
274 |
'current_pages': [2,
|
|
|
275 |
2],
|
|
|
|
|
|
|
276 |
'notebook_display': 'normal',
|
277 |
'notebook_percent': 0.28547008547008546,
|
278 |
'override_title': None,
|
@@ -425,6 +429,7 @@ guimgr.overall-gui-state = {'windowing-policy': 'combined-window',
|
|
425 |
'wide',
|
426 |
1,
|
427 |
{})],
|
|
|
428 |
'primary_view_state': {'editor_states': ({'bookmarks': ([[loc('app.py'),
|
429 |
{'attrib-starts': [],
|
430 |
'code-line': 'except Exception as e:\n',
|
@@ -559,6 +564,20 @@ guimgr.overall-gui-state = {'windowing-policy': 'combined-window',
|
|
559 |
'selection_start': 9148,
|
560 |
'zoom': 0},
|
561 |
1733890299.157337],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
562 |
[loc('selenium_click.py'),
|
563 |
{'attrib-starts': [],
|
564 |
'code-line': 'def test(text): \n',
|
@@ -651,6 +670,7 @@ guimgr.overall-gui-state = {'windowing-policy': 'combined-window',
|
|
651 |
'selection_end': 3330,
|
652 |
'selection_start': 3330,
|
653 |
'zoom': 0},
|
|
|
654 |
1733913275.840877]],
|
655 |
20),
|
656 |
'current-loc': loc('selenium_click.py'),
|
@@ -674,12 +694,214 @@ guimgr.overall-gui-state = {'windowing-policy': 'combined-window',
|
|
674 |
'sel-line-start': 35,
|
675 |
'selection_end': 50,
|
676 |
'selection_start': 50,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
677 |
'zoom': 0})],
|
678 |
'has-focus': True,
|
679 |
'locked': False},
|
680 |
[loc('app.py'),
|
|
|
681 |
loc('selenium_click.py')]),
|
682 |
'open_files': ['app.py',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
683 |
'selenium_click.py']},
|
684 |
'saved_notebook_display': None,
|
685 |
'split_percents': {0: 0.4410585404971933,
|
@@ -688,8 +910,13 @@ guimgr.overall-gui-state = {'windowing-policy': 'combined-window',
|
|
688 |
'splits': 2,
|
689 |
'tab_location': 'top',
|
690 |
'traversal_pos': ((1,
|
|
|
691 |
2),
|
692 |
1733890264.8827372),
|
|
|
|
|
|
|
|
|
693 |
'user_data': {}},
|
694 |
'saved_notebook_display': None,
|
695 |
'split_percents': {0: 0.49743589743589745},
|
@@ -697,13 +924,23 @@ guimgr.overall-gui-state = {'windowing-policy': 'combined-window',
|
|
697 |
'tab_location': 'left',
|
698 |
'traversal_pos': ((1,
|
699 |
0),
|
|
|
700 |
1733890676.3558738),
|
|
|
|
|
|
|
701 |
'user_data': {}},
|
702 |
'window-alloc': (0,
|
703 |
0,
|
704 |
1920,
|
705 |
823)}]}
|
706 |
guimgr.recent-documents = [loc('selenium_click.py'),
|
|
|
|
|
|
|
|
|
|
|
|
|
707 |
loc('app.py')]
|
708 |
guimgr.visual-state = {loc('../../envs/gradio-3/lib/python3.12/site-packages/selenium/webdriver/remote/errorhandler.py'): {'attrib-starts': [('ErrorHandler|0|',
|
709 |
140),
|
@@ -729,6 +966,21 @@ guimgr.visual-state = {loc('../../envs/gradio-3/lib/python3.12/site-packages/sel
|
|
729 |
'selection_end': 4266,
|
730 |
'selection_start': 4266,
|
731 |
'zoom': 0},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
732 |
loc('../../envs/gradio-3/lib/python3.12/site-packages/transformers/pipelines/base.py'): {'attrib-starts': [('infer_framework_load_model|0|',
|
733 |
205)],
|
734 |
'code-line': ' raise RuntimeError(\n',
|
|
|
272 |
'primary_view_state': {'area': 'wide',
|
273 |
'constraint': None,
|
274 |
'current_pages': [2,
|
275 |
+
<<<<<<< HEAD
|
276 |
2],
|
277 |
+
=======
|
278 |
+
1],
|
279 |
+
>>>>>>> 35c5766 (dev)
|
280 |
'notebook_display': 'normal',
|
281 |
'notebook_percent': 0.28547008547008546,
|
282 |
'override_title': None,
|
|
|
429 |
'wide',
|
430 |
1,
|
431 |
{})],
|
432 |
+
<<<<<<< HEAD
|
433 |
'primary_view_state': {'editor_states': ({'bookmarks': ([[loc('app.py'),
|
434 |
{'attrib-starts': [],
|
435 |
'code-line': 'except Exception as e:\n',
|
|
|
564 |
'selection_start': 9148,
|
565 |
'zoom': 0},
|
566 |
1733890299.157337],
|
567 |
+
=======
|
568 |
+
'primary_view_state': {'editor_states': ({'bookmarks': ([[loc('../../envs/gradio-3/lib/python3.12/site-packages/transformers/pipelines/base.py'),
|
569 |
+
{'attrib-starts': [('infer_framework_load_model|0|',
|
570 |
+
205)],
|
571 |
+
'code-line': ' raise RuntimeError(\n',
|
572 |
+
'first-line': 226,
|
573 |
+
'folded-linenos': [],
|
574 |
+
'sel-line': 239,
|
575 |
+
'sel-line-start': 9148,
|
576 |
+
'selection_end': 9148,
|
577 |
+
'selection_start': 9148,
|
578 |
+
'zoom': 0},
|
579 |
+
1733890299.157337],
|
580 |
+
>>>>>>> 35c5766 (dev)
|
581 |
[loc('selenium_click.py'),
|
582 |
{'attrib-starts': [],
|
583 |
'code-line': 'def test(text): \n',
|
|
|
670 |
'selection_end': 3330,
|
671 |
'selection_start': 3330,
|
672 |
'zoom': 0},
|
673 |
+
<<<<<<< HEAD
|
674 |
1733913275.840877]],
|
675 |
20),
|
676 |
'current-loc': loc('selenium_click.py'),
|
|
|
694 |
'sel-line-start': 35,
|
695 |
'selection_end': 50,
|
696 |
'selection_start': 50,
|
697 |
+
=======
|
698 |
+
1733913275.840877],
|
699 |
+
[loc('selenium_click.py'),
|
700 |
+
{'attrib-starts': [],
|
701 |
+
'code-line': 'def test(text): \n',
|
702 |
+
'first-line': 0,
|
703 |
+
'folded-linenos': [],
|
704 |
+
'sel-line': 2,
|
705 |
+
'sel-line-start': 35,
|
706 |
+
'selection_end': 50,
|
707 |
+
'selection_start': 50,
|
708 |
+
'zoom': 0},
|
709 |
+
1733913307.3307884],
|
710 |
+
[loc('app.py'),
|
711 |
+
{'attrib-starts': [('fine_tune_model|0|',
|
712 |
+
30)],
|
713 |
+
'code-line': ' #greater_is_better=True,\n',
|
714 |
+
'first-line': 66,
|
715 |
+
'folded-linenos': [],
|
716 |
+
'sel-line': 82,
|
717 |
+
'sel-line-start': 3317,
|
718 |
+
'selection_end': 3330,
|
719 |
+
'selection_start': 3330,
|
720 |
+
'zoom': 0},
|
721 |
+
1733913312.928603],
|
722 |
+
[loc('app.py'),
|
723 |
+
{'attrib-starts': [('run_train|0|',
|
724 |
+
286)],
|
725 |
+
'code-line': ' #model = get_peft_model(model, lora_config)\n',
|
726 |
+
'first-line': 289,
|
727 |
+
'folded-linenos': [],
|
728 |
+
'sel-line': 303,
|
729 |
+
'sel-line-start': 13896,
|
730 |
+
'selection_end': 13901,
|
731 |
+
'selection_start': 13901,
|
732 |
+
'zoom': 0},
|
733 |
+
1733913335.5815701],
|
734 |
+
[loc('selenium_click.py'),
|
735 |
+
{'attrib-starts': [],
|
736 |
+
'code-line': "pp(test(''' We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased before considering any other forms of uniform scaling across other dimensions. This is largely due to how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, a tall base model might also generally more efficient compared to a large model. We generally find that, regardless of size, even if absolute performance might increase as we continue to stack layers, the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to consi",
|
737 |
+
'first-line': 0,
|
738 |
+
'folded-linenos': [],
|
739 |
+
'sel-line': 18,
|
740 |
+
'sel-line-start': 456,
|
741 |
+
'selection_end': 1486,
|
742 |
+
'selection_start': 1486,
|
743 |
+
'zoom': 0},
|
744 |
+
1733913348.8564975],
|
745 |
+
[loc('selenium_click.py'),
|
746 |
+
{'attrib-starts': [('test|0|',
|
747 |
+
2)],
|
748 |
+
'code-line': ' ) \n',
|
749 |
+
'first-line': 0,
|
750 |
+
'folded-linenos': [],
|
751 |
+
'sel-line': 10,
|
752 |
+
'sel-line-start': 309,
|
753 |
+
'selection_end': 322,
|
754 |
+
'selection_start': 322,
|
755 |
+
'zoom': 0},
|
756 |
+
1733913374.2822852],
|
757 |
+
[loc('../../envs/gradio-3/lib/python3.12/site-packages/torch/nn/modules/module.py'),
|
758 |
+
{'attrib-starts': [('Module|0|',
|
759 |
+
398),
|
760 |
+
('Module|0|._call_impl|0|',
|
761 |
+
1739)],
|
762 |
+
'code-line': ' return forward_call(*args, **kwargs)\n',
|
763 |
+
'first-line': 1723,
|
764 |
+
'folded-linenos': [],
|
765 |
+
'sel-line': 1746,
|
766 |
+
'sel-line-start': 69769,
|
767 |
+
'selection_end': 69769,
|
768 |
+
'selection_start': 69769,
|
769 |
+
'zoom': 0},
|
770 |
+
1733913382.1839955],
|
771 |
+
[loc('selenium_click.py'),
|
772 |
+
{'attrib-starts': [('test|0|',
|
773 |
+
2)],
|
774 |
+
'code-line': " cache_dir='./cache',\n",
|
775 |
+
'first-line': 0,
|
776 |
+
'folded-linenos': [],
|
777 |
+
'sel-line': 9,
|
778 |
+
'sel-line-start': 268,
|
779 |
+
'selection_end': 296,
|
780 |
+
'selection_start': 296,
|
781 |
+
'zoom': 0},
|
782 |
+
1733913397.7313583],
|
783 |
+
[loc('../../envs/gradio-3/lib/python3.12/site-packages/transformers/generation/utils.py'),
|
784 |
+
{'attrib-starts': [('GenerationMixin|0|',
|
785 |
+
331),
|
786 |
+
('GenerationMixin|0|._validate_model_kwargs|0|',
|
787 |
+
1332)],
|
788 |
+
'code-line': ' raise ValueError(\n',
|
789 |
+
'first-line': 1364,
|
790 |
+
'folded-linenos': [],
|
791 |
+
'sel-line': 1387,
|
792 |
+
'sel-line-start': 74204,
|
793 |
+
'selection_end': 74204,
|
794 |
+
'selection_start': 74204,
|
795 |
+
'zoom': 0},
|
796 |
+
1733913398.4591272],
|
797 |
+
[loc('../tidal_slides_com/src/ts_ai.py'),
|
798 |
+
{'attrib-starts': [],
|
799 |
+
'code-line': '#kevin fink\n',
|
800 |
+
'first-line': 0,
|
801 |
+
'folded-linenos': [],
|
802 |
+
'sel-line': 0,
|
803 |
+
'sel-line-start': 0,
|
804 |
+
'selection_end': 0,
|
805 |
+
'selection_start': 0,
|
806 |
+
'zoom': 0},
|
807 |
+
1733913400.5161366],
|
808 |
+
[loc('../tidal_slides_com/src/ts_main.py'),
|
809 |
+
{'attrib-starts': [],
|
810 |
+
'code-line': '#kevin fink\n',
|
811 |
+
'first-line': 0,
|
812 |
+
'folded-linenos': [],
|
813 |
+
'sel-line': 0,
|
814 |
+
'sel-line-start': 0,
|
815 |
+
'selection_end': 0,
|
816 |
+
'selection_start': 0,
|
817 |
+
'zoom': 0},
|
818 |
+
1733913403.929367],
|
819 |
+
[loc('../tidal_slides_com/src/ts_main.py'),
|
820 |
+
{'attrib-starts': [('init_summarizer|0|',
|
821 |
+
81)],
|
822 |
+
'code-line': " model_kwargs={'cache_dir': summary_model_fp}\n",
|
823 |
+
'first-line': 81,
|
824 |
+
'folded-linenos': [],
|
825 |
+
'sel-line': 87,
|
826 |
+
'sel-line-start': 2233,
|
827 |
+
'selection_end': 2285,
|
828 |
+
'selection_start': 2241,
|
829 |
+
'zoom': 0},
|
830 |
+
1733913404.9677553]],
|
831 |
+
20),
|
832 |
+
'current-loc': loc('selenium_click.py'),
|
833 |
+
'editor-state-list': [(loc('app.py'),
|
834 |
+
{'attrib-starts': [('run_train|0|',
|
835 |
+
286)],
|
836 |
+
'code-line': ' #model = get_peft_model(model, lora_config)\n',
|
837 |
+
'first-line': 289,
|
838 |
+
'folded-linenos': [],
|
839 |
+
'sel-line': 303,
|
840 |
+
'sel-line-start': 13896,
|
841 |
+
'selection_end': 13901,
|
842 |
+
'selection_start': 13901,
|
843 |
+
'zoom': 0}),
|
844 |
+
(loc('selenium_click.py'),
|
845 |
+
{'attrib-starts': [('test|0|',
|
846 |
+
2)],
|
847 |
+
'code-line': " model_kwargs={'cache_dir': './cache'}\n",
|
848 |
+
'first-line': 0,
|
849 |
+
'folded-linenos': [],
|
850 |
+
'sel-line': 9,
|
851 |
+
'sel-line-start': 268,
|
852 |
+
'selection_end': 311,
|
853 |
+
'selection_start': 311,
|
854 |
+
'zoom': 0}),
|
855 |
+
(loc('../tidal_slides_com/src/ts_ai.py'),
|
856 |
+
{'attrib-starts': [],
|
857 |
+
'code-line': '#kevin fink\n',
|
858 |
+
'first-line': 0,
|
859 |
+
'folded-linenos': [],
|
860 |
+
'sel-line': 0,
|
861 |
+
'sel-line-start': 0,
|
862 |
+
'selection_end': 0,
|
863 |
+
'selection_start': 0,
|
864 |
+
'zoom': 0}),
|
865 |
+
(loc('../tidal_slides_com/src/ts_main.py'),
|
866 |
+
{'attrib-starts': [('init_summarizer|0|',
|
867 |
+
81)],
|
868 |
+
'code-line': " model_kwargs={'cache_dir': summary_model_fp}\n",
|
869 |
+
'first-line': 81,
|
870 |
+
'folded-linenos': [],
|
871 |
+
'sel-line': 87,
|
872 |
+
'sel-line-start': 2233,
|
873 |
+
'selection_end': 2285,
|
874 |
+
'selection_start': 2241,
|
875 |
+
'zoom': 0}),
|
876 |
+
(loc('../../envs/gradio-3/lib/python3.12/site-packages/transformers/generation/utils.py'),
|
877 |
+
{'attrib-starts': [('GenerationMixin|0|',
|
878 |
+
331),
|
879 |
+
('GenerationMixin|0|._validate_model_kwargs|0|',
|
880 |
+
1332)],
|
881 |
+
'code-line': ' raise ValueError(\n',
|
882 |
+
'first-line': 1364,
|
883 |
+
'folded-linenos': [],
|
884 |
+
'sel-line': 1387,
|
885 |
+
'sel-line-start': 74204,
|
886 |
+
'selection_end': 74204,
|
887 |
+
'selection_start': 74204,
|
888 |
+
>>>>>>> 35c5766 (dev)
|
889 |
'zoom': 0})],
|
890 |
'has-focus': True,
|
891 |
'locked': False},
|
892 |
[loc('app.py'),
|
893 |
+
<<<<<<< HEAD
|
894 |
loc('selenium_click.py')]),
|
895 |
'open_files': ['app.py',
|
896 |
+
=======
|
897 |
+
loc('selenium_click.py'),
|
898 |
+
loc('../tidal_slides_com/src/ts_ai.py'),
|
899 |
+
loc('../tidal_slides_com/src/ts_main.py'),
|
900 |
+
loc('../../envs/gradio-3/lib/python3.12/site-packages/transformers/generation/utils.py')]),
|
901 |
+
'open_files': ['app.py',
|
902 |
+
'../tidal_slides_com/src/ts_ai.py',
|
903 |
+
'../tidal_slides_com/src/ts_main.py',
|
904 |
+
>>>>>>> 35c5766 (dev)
|
905 |
'selenium_click.py']},
|
906 |
'saved_notebook_display': None,
|
907 |
'split_percents': {0: 0.4410585404971933,
|
|
|
910 |
'splits': 2,
|
911 |
'tab_location': 'top',
|
912 |
'traversal_pos': ((1,
|
913 |
+
<<<<<<< HEAD
|
914 |
2),
|
915 |
1733890264.8827372),
|
916 |
+
=======
|
917 |
+
1),
|
918 |
+
1733913397.6458473),
|
919 |
+
>>>>>>> 35c5766 (dev)
|
920 |
'user_data': {}},
|
921 |
'saved_notebook_display': None,
|
922 |
'split_percents': {0: 0.49743589743589745},
|
|
|
924 |
'tab_location': 'left',
|
925 |
'traversal_pos': ((1,
|
926 |
0),
|
927 |
+
<<<<<<< HEAD
|
928 |
1733890676.3558738),
|
929 |
+
=======
|
930 |
+
1733913397.6374698),
|
931 |
+
>>>>>>> 35c5766 (dev)
|
932 |
'user_data': {}},
|
933 |
'window-alloc': (0,
|
934 |
0,
|
935 |
1920,
|
936 |
823)}]}
|
937 |
guimgr.recent-documents = [loc('selenium_click.py'),
|
938 |
+
<<<<<<< HEAD
|
939 |
+
=======
|
940 |
+
loc('../tidal_slides_com/src/ts_main.py'),
|
941 |
+
loc('../tidal_slides_com/src/ts_ai.py'),
|
942 |
+
loc('../../envs/gradio-3/lib/python3.12/site-packages/transformers/generation/utils.py'),
|
943 |
+
>>>>>>> 35c5766 (dev)
|
944 |
loc('app.py')]
|
945 |
guimgr.visual-state = {loc('../../envs/gradio-3/lib/python3.12/site-packages/selenium/webdriver/remote/errorhandler.py'): {'attrib-starts': [('ErrorHandler|0|',
|
946 |
140),
|
|
|
966 |
'selection_end': 4266,
|
967 |
'selection_start': 4266,
|
968 |
'zoom': 0},
|
969 |
+
<<<<<<< HEAD
|
970 |
+
=======
|
971 |
+
loc('../../envs/gradio-3/lib/python3.12/site-packages/torch/nn/modules/module.py'): {'attrib-starts': [('Module|0|',
|
972 |
+
398),
|
973 |
+
('Module|0|._call_impl|0|',
|
974 |
+
1739)],
|
975 |
+
'code-line': ' return forward_call(*args, **kwargs)\n',
|
976 |
+
'first-line': 1723,
|
977 |
+
'folded-linenos': [],
|
978 |
+
'sel-line': 1746,
|
979 |
+
'sel-line-start': 69769,
|
980 |
+
'selection_end': 69769,
|
981 |
+
'selection_start': 69769,
|
982 |
+
'zoom': 0},
|
983 |
+
>>>>>>> 35c5766 (dev)
|
984 |
loc('../../envs/gradio-3/lib/python3.12/site-packages/transformers/pipelines/base.py'): {'attrib-starts': [('infer_framework_load_model|0|',
|
985 |
205)],
|
986 |
'code-line': ' raise RuntimeError(\n',
|
selenium_click.py
CHANGED
@@ -6,7 +6,12 @@ def test(text):
|
|
6 |
"summarization",
|
7 |
model=model_name,
|
8 |
tokenizer=model_name,
|
|
|
9 |
clean_up_tokenization_spaces=True,
|
|
|
|
|
|
|
|
|
10 |
)
|
11 |
|
12 |
max_length = 500
|
@@ -16,7 +21,11 @@ def test(text):
|
|
16 |
from pprint import pprint as pp
|
17 |
|
18 |
|
|
|
19 |
pp(test(''' Shorecode is a leading professional software development and IT service provider.
|
20 |
Our objective is to provide our clients with valuable tools to improve workflows with AI, automation or other techniques. We create impressive state-of-the-art data manipulation and automation tools. At your request, your software solution interface will be implemented as a GUI (Graphical User Interface), webpage, as a chat-bot (Telegram, Discord, etc.) or any other interface requirements you have. For those that are at ease with using a command line interface, we can skip the bells and whistles.
|
21 |
When you choose to enlist our services, we will meet the expectation that your request will be completed with regular progress updates. We take pride in developing turn-key solutions that are intuitive.
|
22 |
-
The code that we write will always be maintainable and well documented according to industry standards. Any bugs arising from defects in our workmanship are covered under warranty. We strive to provide a solution with long-term value to our clients.'''))
|
|
|
|
|
|
|
|
6 |
"summarization",
|
7 |
model=model_name,
|
8 |
tokenizer=model_name,
|
9 |
+
<<<<<<< HEAD
|
10 |
clean_up_tokenization_spaces=True,
|
11 |
+
=======
|
12 |
+
clean_up_tokenization_spaces=True,
|
13 |
+
model_kwargs={'cache_dir': './cache'}
|
14 |
+
>>>>>>> 35c5766 (dev)
|
15 |
)
|
16 |
|
17 |
max_length = 500
|
|
|
21 |
from pprint import pprint as pp
|
22 |
|
23 |
|
24 |
+
<<<<<<< HEAD
|
25 |
pp(test(''' Shorecode is a leading professional software development and IT service provider.
|
26 |
Our objective is to provide our clients with valuable tools to improve workflows with AI, automation or other techniques. We create impressive state-of-the-art data manipulation and automation tools. At your request, your software solution interface will be implemented as a GUI (Graphical User Interface), webpage, as a chat-bot (Telegram, Discord, etc.) or any other interface requirements you have. For those that are at ease with using a command line interface, we can skip the bells and whistles.
|
27 |
When you choose to enlist our services, we will meet the expectation that your request will be completed with regular progress updates. We take pride in developing turn-key solutions that are intuitive.
|
28 |
+
The code that we write will always be maintainable and well documented according to industry standards. Any bugs arising from defects in our workmanship are covered under warranty. We strive to provide a solution with long-term value to our clients.'''))
|
29 |
+
=======
|
30 |
+
pp(test(''' We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased before considering any other forms of uniform scaling across other dimensions. This is largely due to how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, a tall base model might also generally more efficient compared to a large model. We generally find that, regardless of size, even if absolute performance might increase as we continue to stack layers, the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to consider.'''))
|
31 |
+
>>>>>>> 35c5766 (dev)
|