shorecode commited on
Commit
5277372
·
1 Parent(s): c1e5fc9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -191
app.py CHANGED
@@ -1,190 +1,18 @@
1
- import spaces
2
  import gradio as gr
3
- from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
4
  from transformers import DataCollatorForSeq2Seq, AutoConfig
5
- from datasets import load_dataset, concatenate_datasets, load_from_disk
6
- import traceback
7
- from sklearn.metrics import accuracy_score
8
- import numpy as np
9
- import torch
10
- import os
11
- import evaluate
12
- from huggingface_hub import login
13
- from peft import get_peft_model, LoraConfig
14
-
15
- os.environ['HF_HOME'] = '/data/.huggingface'
16
- '''
17
- lora_config = LoraConfig(
18
- r=16, # Rank of the low-rank adaptation
19
- lora_alpha=32, # Scaling factor
20
- lora_dropout=0.1, # Dropout for LoRA layers
21
- bias="none" # Bias handling
22
- )
23
- model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
24
- model = get_peft_model(model, lora_config)
25
- model.gradient_checkpointing_enable()
26
- model_save_path = '/data/lora_finetuned_model' # Specify your desired save path
27
- model.save_pretrained(model_save_path)
28
- '''
29
-
30
- def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
31
- try:
32
- torch.nn.CrossEntropyLoss()
33
- metric = evaluate.load("rouge", cache_dir='/data/cache')
34
- def compute_metrics(eval_preds):
35
- preds, labels = eval_preds
36
- if isinstance(preds, tuple):
37
- preds = preds[0]
38
- # Replace -100s used for padding as we can't decode them
39
- preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
40
- decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
41
- labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
42
- decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
43
-
44
- result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
45
- result = {k: round(v * 100, 4) for k, v in result.items()}
46
- prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
47
- result["gen_len"] = np.mean(prediction_lens)
48
- return result
49
-
50
- login(api_key.strip())
51
-
52
-
53
- # Load the model and tokenizer
54
-
55
-
56
-
57
- # Set training arguments
58
- training_args = TrainingArguments(
59
- output_dir='/data/results',
60
- eval_strategy="steps", # Change this to steps
61
- save_strategy='steps',
62
- learning_rate=lr*0.00001,
63
- per_device_train_batch_size=int(batch_size),
64
- per_device_eval_batch_size=int(batch_size),
65
- num_train_epochs=int(num_epochs),
66
- weight_decay=0.01,
67
- #gradient_accumulation_steps=int(grad),
68
- #max_grad_norm = 1.0,
69
- load_best_model_at_end=True,
70
- metric_for_best_model="accuracy",
71
- greater_is_better=True,
72
- logging_dir='/data/logs',
73
- logging_steps=10,
74
- #push_to_hub=True,
75
- hub_model_id=hub_id.strip(),
76
- fp16=True,
77
- #lr_scheduler_type='cosine',
78
- save_steps=100, # Save checkpoint every 500 steps
79
- save_total_limit=3,
80
- )
81
- # Check if a checkpoint exists and load it
82
- if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
83
- print("Loading model from checkpoint...")
84
- model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
85
-
86
- def tokenize_function(examples):
87
-
88
- # Assuming 'text' is the input and 'target' is the expected output
89
- model_inputs = tokenizer(
90
- examples['text'],
91
- max_length=max_length, # Set to None for dynamic padding
92
- truncation=True,
93
- padding='longest',
94
- return_tensors='pt',
95
- )
96
-
97
- # Setup the decoder input IDs (shifted right)
98
- labels = tokenizer(
99
- examples['target'],
100
- max_length=max_length, # Set to None for dynamic padding
101
- truncation=True,
102
- padding='longest',
103
- #text_target=examples['target'],
104
- return_tensors='pt',
105
- )
106
-
107
- # Add labels to the model inputs
108
- model_inputs["labels"] = labels["input_ids"]
109
- return model_inputs
110
-
111
- #max_length = 512
112
- # Load the dataset
113
- dataset = load_dataset(dataset_name.strip())
114
- train_size = len(dataset['train'])
115
- half_size = train_size // 2
116
- max_length = model.get_input_embeddings().weight.shape[0]
117
- try:
118
- tokenized_first_half = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
119
- second_half = dataset['train'].select(range(half_size, train_size))
120
- tokenized_second_half = tokenize_function(second_half.to_dict())
121
- tokenized_train_dataset = concatenate_datasets([tokenized_first_half, tokenized_second_half])
122
- tokenized_test_dataset = tokenize_function(dataset['test'])
123
-
124
- # Create Trainer
125
- trainer = Trainer(
126
- model=model,
127
- args=training_args,
128
- train_dataset=tokenized_train_dataset,
129
- eval_dataset=tokenized_test_dataset,
130
- compute_metrics=compute_metrics,
131
- )
132
- except:
133
- tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
134
- # Tokenize the dataset
135
- first_half = dataset['train'].select(range(half_size))
136
- tokenized_half = tokenize_function(first_half.to_dict())
137
-
138
- tokenized_half.save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
139
-
140
- return 'RUN AGAIN TO LOAD REST OF DATA'
141
-
142
- # Fine-tune the model
143
- if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
144
- train_result = trainer.train(resume_from_checkpoint=True)
145
- else:
146
- train_result = trainer.train()
147
- trainer.push_to_hub(commit_message="Training complete!")
148
- except Exception as e:
149
- return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
150
- return 'DONE!'#train_result
151
- '''
152
- # Define Gradio interface
153
- def predict(text):
154
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
155
- tokenizer = AutoTokenizer.from_pretrained(model_name)
156
- inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
157
- outputs = model(inputs)
158
- predictions = outputs.logits.argmax(dim=-1)
159
- return predictions.item()
160
- '''
161
 
162
  @spaces.GPU(duration=120)
163
- def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
164
- def initialize_weights(model):
165
- for name, param in model.named_parameters():
166
- if 'encoder.block.0.layer.0.DenseReluDense.wi.weight' in name: # Example layer
167
- torch.nn.init.xavier_uniform_(param.data) # Xavier initialization
168
- elif 'encoder.block.0.layer.0.DenseReluDense.wo.weight' in name: # Another example layer
169
- torch.nn.init.kaiming_normal_(param.data) # Kaiming initialization
170
-
171
- config = AutoConfig.from_pretrained("google/t5-efficient-tiny")
172
- model = AutoModelForSeq2SeqLM.from_config(config)
173
- initialize_weights(model)
174
- lora_config = LoraConfig(
175
- r=16, # Rank of the low-rank adaptation
176
- lora_alpha=32, # Scaling factor
177
- lora_dropout=0.1, # Dropout for LoRA layers
178
- bias="none" # Bias handling
179
- )
180
- model = get_peft_model(model, lora_config)
181
- result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
182
- return result
183
  # Create Gradio interface
184
  try:
185
  iface = gr.Interface(
186
  fn=run_train,
187
  inputs=[
 
188
  gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
189
  gr.Textbox(label="HF hub to push to after training"),
190
  gr.Textbox(label="HF API token"),
@@ -197,19 +25,8 @@ try:
197
  title="Fine-Tune Hugging Face Model",
198
  description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
199
  )
200
- '''
201
- iface = gr.Interface(
202
- fn=predict,
203
- inputs=[
204
- gr.Textbox(label="Query"),
205
- ],
206
- outputs="text",
207
- title="Fine-Tune Hugging Face Model",
208
- description="This interface allows you to test a fine-tune Hugging Face model."
209
- )
210
- '''
211
  # Launch the interface
212
  iface.launch()
213
  except Exception as e:
214
- print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")
215
-
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForSeq2SeqLM
3
  from transformers import DataCollatorForSeq2Seq, AutoConfig
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  @spaces.GPU(duration=120)
6
+ def run_train(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
7
+
8
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
9
+ return "WORKS"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  # Create Gradio interface
11
  try:
12
  iface = gr.Interface(
13
  fn=run_train,
14
  inputs=[
15
+ gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
16
  gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
17
  gr.Textbox(label="HF hub to push to after training"),
18
  gr.Textbox(label="HF API token"),
 
25
  title="Fine-Tune Hugging Face Model",
26
  description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
27
  )
28
+
 
 
 
 
 
 
 
 
 
 
29
  # Launch the interface
30
  iface.launch()
31
  except Exception as e:
32
+ print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")