Update app.py
Browse files
app.py
CHANGED
@@ -1,190 +1,18 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
from transformers import DataCollatorForSeq2Seq, AutoConfig
|
5 |
-
from datasets import load_dataset, concatenate_datasets, load_from_disk
|
6 |
-
import traceback
|
7 |
-
from sklearn.metrics import accuracy_score
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
import os
|
11 |
-
import evaluate
|
12 |
-
from huggingface_hub import login
|
13 |
-
from peft import get_peft_model, LoraConfig
|
14 |
-
|
15 |
-
os.environ['HF_HOME'] = '/data/.huggingface'
|
16 |
-
'''
|
17 |
-
lora_config = LoraConfig(
|
18 |
-
r=16, # Rank of the low-rank adaptation
|
19 |
-
lora_alpha=32, # Scaling factor
|
20 |
-
lora_dropout=0.1, # Dropout for LoRA layers
|
21 |
-
bias="none" # Bias handling
|
22 |
-
)
|
23 |
-
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
|
24 |
-
model = get_peft_model(model, lora_config)
|
25 |
-
model.gradient_checkpointing_enable()
|
26 |
-
model_save_path = '/data/lora_finetuned_model' # Specify your desired save path
|
27 |
-
model.save_pretrained(model_save_path)
|
28 |
-
'''
|
29 |
-
|
30 |
-
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
31 |
-
try:
|
32 |
-
torch.nn.CrossEntropyLoss()
|
33 |
-
metric = evaluate.load("rouge", cache_dir='/data/cache')
|
34 |
-
def compute_metrics(eval_preds):
|
35 |
-
preds, labels = eval_preds
|
36 |
-
if isinstance(preds, tuple):
|
37 |
-
preds = preds[0]
|
38 |
-
# Replace -100s used for padding as we can't decode them
|
39 |
-
preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
|
40 |
-
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
41 |
-
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
42 |
-
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
43 |
-
|
44 |
-
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
45 |
-
result = {k: round(v * 100, 4) for k, v in result.items()}
|
46 |
-
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
|
47 |
-
result["gen_len"] = np.mean(prediction_lens)
|
48 |
-
return result
|
49 |
-
|
50 |
-
login(api_key.strip())
|
51 |
-
|
52 |
-
|
53 |
-
# Load the model and tokenizer
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
# Set training arguments
|
58 |
-
training_args = TrainingArguments(
|
59 |
-
output_dir='/data/results',
|
60 |
-
eval_strategy="steps", # Change this to steps
|
61 |
-
save_strategy='steps',
|
62 |
-
learning_rate=lr*0.00001,
|
63 |
-
per_device_train_batch_size=int(batch_size),
|
64 |
-
per_device_eval_batch_size=int(batch_size),
|
65 |
-
num_train_epochs=int(num_epochs),
|
66 |
-
weight_decay=0.01,
|
67 |
-
#gradient_accumulation_steps=int(grad),
|
68 |
-
#max_grad_norm = 1.0,
|
69 |
-
load_best_model_at_end=True,
|
70 |
-
metric_for_best_model="accuracy",
|
71 |
-
greater_is_better=True,
|
72 |
-
logging_dir='/data/logs',
|
73 |
-
logging_steps=10,
|
74 |
-
#push_to_hub=True,
|
75 |
-
hub_model_id=hub_id.strip(),
|
76 |
-
fp16=True,
|
77 |
-
#lr_scheduler_type='cosine',
|
78 |
-
save_steps=100, # Save checkpoint every 500 steps
|
79 |
-
save_total_limit=3,
|
80 |
-
)
|
81 |
-
# Check if a checkpoint exists and load it
|
82 |
-
if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
|
83 |
-
print("Loading model from checkpoint...")
|
84 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
|
85 |
-
|
86 |
-
def tokenize_function(examples):
|
87 |
-
|
88 |
-
# Assuming 'text' is the input and 'target' is the expected output
|
89 |
-
model_inputs = tokenizer(
|
90 |
-
examples['text'],
|
91 |
-
max_length=max_length, # Set to None for dynamic padding
|
92 |
-
truncation=True,
|
93 |
-
padding='longest',
|
94 |
-
return_tensors='pt',
|
95 |
-
)
|
96 |
-
|
97 |
-
# Setup the decoder input IDs (shifted right)
|
98 |
-
labels = tokenizer(
|
99 |
-
examples['target'],
|
100 |
-
max_length=max_length, # Set to None for dynamic padding
|
101 |
-
truncation=True,
|
102 |
-
padding='longest',
|
103 |
-
#text_target=examples['target'],
|
104 |
-
return_tensors='pt',
|
105 |
-
)
|
106 |
-
|
107 |
-
# Add labels to the model inputs
|
108 |
-
model_inputs["labels"] = labels["input_ids"]
|
109 |
-
return model_inputs
|
110 |
-
|
111 |
-
#max_length = 512
|
112 |
-
# Load the dataset
|
113 |
-
dataset = load_dataset(dataset_name.strip())
|
114 |
-
train_size = len(dataset['train'])
|
115 |
-
half_size = train_size // 2
|
116 |
-
max_length = model.get_input_embeddings().weight.shape[0]
|
117 |
-
try:
|
118 |
-
tokenized_first_half = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
|
119 |
-
second_half = dataset['train'].select(range(half_size, train_size))
|
120 |
-
tokenized_second_half = tokenize_function(second_half.to_dict())
|
121 |
-
tokenized_train_dataset = concatenate_datasets([tokenized_first_half, tokenized_second_half])
|
122 |
-
tokenized_test_dataset = tokenize_function(dataset['test'])
|
123 |
-
|
124 |
-
# Create Trainer
|
125 |
-
trainer = Trainer(
|
126 |
-
model=model,
|
127 |
-
args=training_args,
|
128 |
-
train_dataset=tokenized_train_dataset,
|
129 |
-
eval_dataset=tokenized_test_dataset,
|
130 |
-
compute_metrics=compute_metrics,
|
131 |
-
)
|
132 |
-
except:
|
133 |
-
tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
|
134 |
-
# Tokenize the dataset
|
135 |
-
first_half = dataset['train'].select(range(half_size))
|
136 |
-
tokenized_half = tokenize_function(first_half.to_dict())
|
137 |
-
|
138 |
-
tokenized_half.save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
|
139 |
-
|
140 |
-
return 'RUN AGAIN TO LOAD REST OF DATA'
|
141 |
-
|
142 |
-
# Fine-tune the model
|
143 |
-
if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
|
144 |
-
train_result = trainer.train(resume_from_checkpoint=True)
|
145 |
-
else:
|
146 |
-
train_result = trainer.train()
|
147 |
-
trainer.push_to_hub(commit_message="Training complete!")
|
148 |
-
except Exception as e:
|
149 |
-
return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
|
150 |
-
return 'DONE!'#train_result
|
151 |
-
'''
|
152 |
-
# Define Gradio interface
|
153 |
-
def predict(text):
|
154 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
|
155 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
156 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
157 |
-
outputs = model(inputs)
|
158 |
-
predictions = outputs.logits.argmax(dim=-1)
|
159 |
-
return predictions.item()
|
160 |
-
'''
|
161 |
|
162 |
@spaces.GPU(duration=120)
|
163 |
-
def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
torch.nn.init.xavier_uniform_(param.data) # Xavier initialization
|
168 |
-
elif 'encoder.block.0.layer.0.DenseReluDense.wo.weight' in name: # Another example layer
|
169 |
-
torch.nn.init.kaiming_normal_(param.data) # Kaiming initialization
|
170 |
-
|
171 |
-
config = AutoConfig.from_pretrained("google/t5-efficient-tiny")
|
172 |
-
model = AutoModelForSeq2SeqLM.from_config(config)
|
173 |
-
initialize_weights(model)
|
174 |
-
lora_config = LoraConfig(
|
175 |
-
r=16, # Rank of the low-rank adaptation
|
176 |
-
lora_alpha=32, # Scaling factor
|
177 |
-
lora_dropout=0.1, # Dropout for LoRA layers
|
178 |
-
bias="none" # Bias handling
|
179 |
-
)
|
180 |
-
model = get_peft_model(model, lora_config)
|
181 |
-
result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
|
182 |
-
return result
|
183 |
# Create Gradio interface
|
184 |
try:
|
185 |
iface = gr.Interface(
|
186 |
fn=run_train,
|
187 |
inputs=[
|
|
|
188 |
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
|
189 |
gr.Textbox(label="HF hub to push to after training"),
|
190 |
gr.Textbox(label="HF API token"),
|
@@ -197,19 +25,8 @@ try:
|
|
197 |
title="Fine-Tune Hugging Face Model",
|
198 |
description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
|
199 |
)
|
200 |
-
|
201 |
-
iface = gr.Interface(
|
202 |
-
fn=predict,
|
203 |
-
inputs=[
|
204 |
-
gr.Textbox(label="Query"),
|
205 |
-
],
|
206 |
-
outputs="text",
|
207 |
-
title="Fine-Tune Hugging Face Model",
|
208 |
-
description="This interface allows you to test a fine-tune Hugging Face model."
|
209 |
-
)
|
210 |
-
'''
|
211 |
# Launch the interface
|
212 |
iface.launch()
|
213 |
except Exception as e:
|
214 |
-
print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")
|
215 |
-
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForSeq2SeqLM
|
3 |
from transformers import DataCollatorForSeq2Seq, AutoConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
@spaces.GPU(duration=120)
|
6 |
+
def run_train(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
7 |
+
|
8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
+
return "WORKS"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Create Gradio interface
|
11 |
try:
|
12 |
iface = gr.Interface(
|
13 |
fn=run_train,
|
14 |
inputs=[
|
15 |
+
gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
|
16 |
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
|
17 |
gr.Textbox(label="HF hub to push to after training"),
|
18 |
gr.Textbox(label="HF API token"),
|
|
|
25 |
title="Fine-Tune Hugging Face Model",
|
26 |
description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
|
27 |
)
|
28 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Launch the interface
|
30 |
iface.launch()
|
31 |
except Exception as e:
|
32 |
+
print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")
|
|