Kevin Fink commited on
Commit
744bfc7
·
1 Parent(s): 94aee2e
Files changed (1) hide show
  1. app.py +6 -8
app.py CHANGED
@@ -52,24 +52,22 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
52
 
53
 
54
  # Load the model and tokenizer
55
-
56
-
57
- print(f"BATCH: {batch_size}")
58
  # Set training arguments
59
  training_args = TrainingArguments(
60
  output_dir='/data/results',
61
  eval_strategy="steps", # Change this to steps
62
  save_strategy='steps',
63
- learning_rate=lr*0.000001,
64
  per_device_train_batch_size=int(batch_size),
65
  per_device_eval_batch_size=int(batch_size),
66
  num_train_epochs=int(num_epochs),
67
  weight_decay=0.01,
68
- gradient_accumulation_steps=int(grad),
69
  #max_grad_norm = 3.0,
70
  load_best_model_at_end=True,
71
- #metric_for_best_model="accuracy",
72
- #greater_is_better=True,
73
  logging_dir='/data/logs',
74
  logging_steps=10,
75
  #push_to_hub=True,
@@ -230,7 +228,7 @@ def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
230
  lora_dropout=0.1, # Dropout for LoRA layers
231
  bias="none" # Bias handling
232
  )
233
- #model = get_peft_model(model, lora_config)
234
  result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
235
  return result
236
  # Create Gradio interface
 
52
 
53
 
54
  # Load the model and tokenizer
55
+
 
 
56
  # Set training arguments
57
  training_args = TrainingArguments(
58
  output_dir='/data/results',
59
  eval_strategy="steps", # Change this to steps
60
  save_strategy='steps',
61
+ learning_rate=lr*0.00001,
62
  per_device_train_batch_size=int(batch_size),
63
  per_device_eval_batch_size=int(batch_size),
64
  num_train_epochs=int(num_epochs),
65
  weight_decay=0.01,
66
+ #gradient_accumulation_steps=int(grad),
67
  #max_grad_norm = 3.0,
68
  load_best_model_at_end=True,
69
+ metric_for_best_model="accuracy",
70
+ greater_is_better=True,
71
  logging_dir='/data/logs',
72
  logging_steps=10,
73
  #push_to_hub=True,
 
228
  lora_dropout=0.1, # Dropout for LoRA layers
229
  bias="none" # Bias handling
230
  )
231
+ model = get_peft_model(model, lora_config)
232
  result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
233
  return result
234
  # Create Gradio interface