Kevin Fink
commited on
Commit
·
a1b0975
1
Parent(s):
57918ff
init
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM, TrainerCallback
|
|
|
4 |
from datasets import load_dataset
|
5 |
import traceback
|
6 |
from huggingface_hub import login
|
@@ -41,17 +42,30 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
41 |
def tokenize_function(examples):
|
42 |
max_length = 16
|
43 |
# Assuming 'text' is the input and 'target' is the expected output
|
44 |
-
model_inputs = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Setup the decoder input IDs (shifted right)
|
47 |
with tokenizer.as_target_tokenizer():
|
48 |
-
labels = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Add labels to the model inputs
|
51 |
model_inputs["labels"] = labels["input_ids"]
|
52 |
return model_inputs
|
53 |
|
54 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
|
|
55 |
|
56 |
# Set training arguments
|
57 |
training_args = TrainingArguments(
|
@@ -63,7 +77,7 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
63 |
per_device_eval_batch_size=1,
|
64 |
num_train_epochs=int(num_epochs),
|
65 |
weight_decay=0.01,
|
66 |
-
|
67 |
load_best_model_at_end=True,
|
68 |
metric_for_best_model="accuracy",
|
69 |
greater_is_better=True,
|
@@ -79,8 +93,8 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
79 |
trainer = Trainer(
|
80 |
model=model,
|
81 |
args=training_args,
|
82 |
-
train_dataset=
|
83 |
-
eval_dataset=
|
84 |
#callbacks=[LoggingCallback()],
|
85 |
)
|
86 |
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM, TrainerCallback
|
4 |
+
from transformers import DataCollatorForSeq2Seq
|
5 |
from datasets import load_dataset
|
6 |
import traceback
|
7 |
from huggingface_hub import login
|
|
|
42 |
def tokenize_function(examples):
|
43 |
max_length = 16
|
44 |
# Assuming 'text' is the input and 'target' is the expected output
|
45 |
+
model_inputs = tokenizer(
|
46 |
+
examples['text'],
|
47 |
+
max_length=None, # Set to None for dynamic padding
|
48 |
+
padding=False, # Disable padding here, we will handle it later
|
49 |
+
truncation=True,
|
50 |
+
return_tensors="pt" # Return PyTorch tensors
|
51 |
+
)
|
52 |
|
53 |
# Setup the decoder input IDs (shifted right)
|
54 |
with tokenizer.as_target_tokenizer():
|
55 |
+
labels = tokenizer(
|
56 |
+
examples['target'],
|
57 |
+
max_length=None, # Set to None for dynamic padding
|
58 |
+
padding=False, # Disable padding here, we will handle it later
|
59 |
+
truncation=True,
|
60 |
+
return_tensors="pt"
|
61 |
+
)
|
62 |
|
63 |
# Add labels to the model inputs
|
64 |
model_inputs["labels"] = labels["input_ids"]
|
65 |
return model_inputs
|
66 |
|
67 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
68 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
69 |
|
70 |
# Set training arguments
|
71 |
training_args = TrainingArguments(
|
|
|
77 |
per_device_eval_batch_size=1,
|
78 |
num_train_epochs=int(num_epochs),
|
79 |
weight_decay=0.01,
|
80 |
+
gradient_accumulation_steps=int(grad),
|
81 |
load_best_model_at_end=True,
|
82 |
metric_for_best_model="accuracy",
|
83 |
greater_is_better=True,
|
|
|
93 |
trainer = Trainer(
|
94 |
model=model,
|
95 |
args=training_args,
|
96 |
+
train_dataset=data_collator['train'],
|
97 |
+
eval_dataset=data_collator['test'],
|
98 |
#callbacks=[LoggingCallback()],
|
99 |
)
|
100 |
|