Kevin Fink commited on
Commit
a20d3d9
·
1 Parent(s): 733b7e9
Files changed (1) hide show
  1. app.py +13 -10
app.py CHANGED
@@ -242,19 +242,20 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
242
  except Exception as e:
243
  return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
244
  return 'DONE!'#train_result
245
- '''
246
  # Define Gradio interface
247
  def predict(text):
248
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
249
- tokenizer = AutoTokenizer.from_pretrained(model_name)
250
  inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
251
  outputs = model(inputs)
252
  predictions = outputs.logits.argmax(dim=-1)
253
  return predictions.item()
254
- '''
255
 
256
  @spaces.GPU(duration=120)
257
- def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
 
258
  def initialize_weights(model):
259
  for name, param in model.named_parameters():
260
  if 'encoder.block.0.layer.0.DenseReluDense.wi.weight' in name: # Example layer
@@ -262,7 +263,7 @@ def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
262
  elif 'encoder.block.0.layer.0.DenseReluDense.wo.weight' in name: # Another example layer
263
  torch.nn.init.kaiming_normal_(param.data) # Kaiming initialization
264
 
265
- config = AutoConfig.from_pretrained("google/t5-efficient-tiny-nh8")
266
  model = AutoModelForSeq2SeqLM.from_config(config)
267
  initialize_weights(model)
268
  lora_config = LoraConfig(
@@ -272,10 +273,12 @@ def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
272
  bias="none" # Bias handling
273
  )
274
  #model = get_peft_model(model, lora_config)
275
- result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
 
276
  return result
277
  # Create Gradio interface
278
- try:
 
279
  iface = gr.Interface(
280
  fn=run_train,
281
  inputs=[
@@ -293,7 +296,7 @@ try:
293
  )
294
  '''
295
  iface = gr.Interface(
296
- fn=predict,
297
  inputs=[
298
  gr.Textbox(label="Query"),
299
  ],
@@ -301,7 +304,7 @@ try:
301
  title="Fine-Tune Hugging Face Model",
302
  description="This interface allows you to test a fine-tune Hugging Face model."
303
  )
304
- '''
305
  # Launch the interface
306
  iface.launch()
307
  except Exception as e:
 
242
  except Exception as e:
243
  return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
244
  return 'DONE!'#train_result
245
+
246
  # Define Gradio interface
247
  def predict(text):
248
+ model = AutoModelForSeq2SeqLM.from_pretrained('shorecode/t5-efficient-tiny-nh8-summarizer', num_labels=2)
249
+ tokenizer = AutoTokenizer.from_pretrained('shorecode/t5-efficient-tiny-nh8-summarizer')
250
  inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
251
  outputs = model(inputs)
252
  predictions = outputs.logits.argmax(dim=-1)
253
  return predictions.item()
254
+
255
 
256
  @spaces.GPU(duration=120)
257
+ #def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
258
+ def run_train(text):
259
  def initialize_weights(model):
260
  for name, param in model.named_parameters():
261
  if 'encoder.block.0.layer.0.DenseReluDense.wi.weight' in name: # Example layer
 
263
  elif 'encoder.block.0.layer.0.DenseReluDense.wo.weight' in name: # Another example layer
264
  torch.nn.init.kaiming_normal_(param.data) # Kaiming initialization
265
 
266
+ config = AutoConfig.from_pretrained("shorecode/t5-efficient-tiny-nh8-summarizer")
267
  model = AutoModelForSeq2SeqLM.from_config(config)
268
  initialize_weights(model)
269
  lora_config = LoraConfig(
 
273
  bias="none" # Bias handling
274
  )
275
  #model = get_peft_model(model, lora_config)
276
+ #result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
277
+ result = predict(text)
278
  return result
279
  # Create Gradio interface
280
+ try:
281
+ '''
282
  iface = gr.Interface(
283
  fn=run_train,
284
  inputs=[
 
296
  )
297
  '''
298
  iface = gr.Interface(
299
+ fn=run_train,
300
  inputs=[
301
  gr.Textbox(label="Query"),
302
  ],
 
304
  title="Fine-Tune Hugging Face Model",
305
  description="This interface allows you to test a fine-tune Hugging Face model."
306
  )
307
+
308
  # Launch the interface
309
  iface.launch()
310
  except Exception as e: