Kevin Fink
commited on
Commit
·
c7cf3c2
1
Parent(s):
5912a26
dev
Browse files
app.py
CHANGED
@@ -13,7 +13,17 @@ from peft import get_peft_model, LoraConfig
|
|
13 |
|
14 |
os.environ['HF_HOME'] = '/data/.huggingface'
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
@@ -135,20 +145,11 @@ def predict(text):
|
|
135 |
|
136 |
@spaces.GPU(duration=120)
|
137 |
def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
138 |
-
|
139 |
-
r=16, # Rank of the low-rank adaptation
|
140 |
-
lora_alpha=32, # Scaling factor
|
141 |
-
lora_dropout=0.1, # Dropout for LoRA layers
|
142 |
-
bias="none" # Bias handling
|
143 |
-
)
|
144 |
-
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
|
145 |
-
model = get_peft_model(model, lora_config)
|
146 |
-
model.gradient_checkpointing_enable()
|
147 |
result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
|
148 |
return result
|
149 |
# Create Gradio interface
|
150 |
-
try:
|
151 |
-
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8'.strip(), num_labels=2, force_download=True)
|
152 |
iface = gr.Interface(
|
153 |
fn=run_train,
|
154 |
inputs=[
|
|
|
13 |
|
14 |
os.environ['HF_HOME'] = '/data/.huggingface'
|
15 |
|
16 |
+
lora_config = LoraConfig(
|
17 |
+
r=16, # Rank of the low-rank adaptation
|
18 |
+
lora_alpha=32, # Scaling factor
|
19 |
+
lora_dropout=0.1, # Dropout for LoRA layers
|
20 |
+
bias="none" # Bias handling
|
21 |
+
)
|
22 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
|
23 |
+
model = get_peft_model(model, lora_config)
|
24 |
+
model.gradient_checkpointing_enable()
|
25 |
+
model_save_path = '/data/lora_finetuned_model' # Specify your desired save path
|
26 |
+
model.save_pretrained(model_save_path)
|
27 |
|
28 |
|
29 |
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
|
|
145 |
|
146 |
@spaces.GPU(duration=120)
|
147 |
def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
148 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('/data/lora_finetuned_model', num_labels=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
|
150 |
return result
|
151 |
# Create Gradio interface
|
152 |
+
try:
|
|
|
153 |
iface = gr.Interface(
|
154 |
fn=run_train,
|
155 |
inputs=[
|