Kevin Fink
commited on
Commit
·
d86b87f
1
Parent(s):
d085a88
init
Browse files
app.py
CHANGED
@@ -1,25 +1,12 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
from transformers import DataCollatorForSeq2Seq
|
5 |
from datasets import load_dataset
|
6 |
import traceback
|
7 |
from huggingface_hub import login
|
8 |
from peft import get_peft_model, LoraConfig
|
9 |
|
10 |
-
class LoggingCallback(TrainerCallback):
|
11 |
-
def on_step_end(self, args, state, control, kwargs):
|
12 |
-
# Log the learning rate
|
13 |
-
current_lr = state.optimizer.param_groups[0]['lr']
|
14 |
-
print(f"Current Learning Rate: {current_lr}")
|
15 |
-
|
16 |
-
def on_epoch_end(self, args, state, control, kwargs):
|
17 |
-
# Log the error rate (assuming you have a metric to calculate it)
|
18 |
-
# Here we assume you have a way to get the validation loss
|
19 |
-
if state.best_metric is not None:
|
20 |
-
error_rate = 1 - state.best_metric # Assuming best_metric is accuracy
|
21 |
-
print(f"Current Error Rate: {error_rate:.4f}")
|
22 |
-
|
23 |
@spaces.GPU(duration=120)
|
24 |
def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
25 |
try:
|
@@ -38,7 +25,7 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
38 |
model = get_peft_model(model, lora_config)
|
39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
40 |
|
41 |
-
max_length =
|
42 |
|
43 |
# Tokenize the dataset
|
44 |
def tokenize_function(examples):
|
@@ -71,10 +58,9 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
71 |
training_args = TrainingArguments(
|
72 |
output_dir='./results',
|
73 |
eval_strategy="epoch",
|
74 |
-
save_strategy='epoch',
|
75 |
learning_rate=lr*0.000001,
|
76 |
per_device_train_batch_size=int(batch_size),
|
77 |
-
per_device_eval_batch_size=
|
78 |
num_train_epochs=int(num_epochs),
|
79 |
weight_decay=0.01,
|
80 |
gradient_accumulation_steps=int(grad),
|
@@ -87,8 +73,14 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
87 |
hub_model_id=hub_id.strip(),
|
88 |
fp16=True,
|
89 |
#lr_scheduler_type='cosine',
|
|
|
|
|
90 |
)
|
91 |
-
|
|
|
|
|
|
|
|
|
92 |
# Create Trainer
|
93 |
trainer = Trainer(
|
94 |
model=model,
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
from transformers import DataCollatorForSeq2Seq
|
5 |
from datasets import load_dataset
|
6 |
import traceback
|
7 |
from huggingface_hub import login
|
8 |
from peft import get_peft_model, LoraConfig
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
@spaces.GPU(duration=120)
|
11 |
def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
12 |
try:
|
|
|
25 |
model = get_peft_model(model, lora_config)
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
|
28 |
+
max_length = 256
|
29 |
|
30 |
# Tokenize the dataset
|
31 |
def tokenize_function(examples):
|
|
|
58 |
training_args = TrainingArguments(
|
59 |
output_dir='./results',
|
60 |
eval_strategy="epoch",
|
|
|
61 |
learning_rate=lr*0.000001,
|
62 |
per_device_train_batch_size=int(batch_size),
|
63 |
+
per_device_eval_batch_size=int(batch_size),
|
64 |
num_train_epochs=int(num_epochs),
|
65 |
weight_decay=0.01,
|
66 |
gradient_accumulation_steps=int(grad),
|
|
|
73 |
hub_model_id=hub_id.strip(),
|
74 |
fp16=True,
|
75 |
#lr_scheduler_type='cosine',
|
76 |
+
save_steps=500, # Save checkpoint every 500 steps
|
77 |
+
save_total_limit=3,
|
78 |
)
|
79 |
+
# Check if a checkpoint exists and load it
|
80 |
+
if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
|
81 |
+
print("Loading model from checkpoint...")
|
82 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
|
83 |
+
|
84 |
# Create Trainer
|
85 |
trainer = Trainer(
|
86 |
model=model,
|