Kevin Fink commited on
Commit
ee90a8f
·
1 Parent(s): c17b108
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -246,19 +246,19 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
246
  # Define Gradio interface
247
  @spaces.GPU
248
  def predict(text):
 
249
  config = AutoConfig.from_pretrained("shorecode/t5-efficient-tiny-nh8-summarizer")
250
  model = AutoModelForSeq2SeqLM.from_config(config)
251
  #initialize_weights(model)
252
  tokenizer = AutoTokenizer.from_pretrained('shorecode/t5-efficient-tiny-nh8-summarizer')
253
- inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
254
  outputs = model(inputs)
255
  predictions = outputs.logits.argmax(dim=-1)
256
  return predictions.item()
257
 
258
 
259
  @spaces.GPU(duration=120)
260
- #def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
261
- def run_train(text):
262
  def initialize_weights(model):
263
  for name, param in model.named_parameters():
264
  if 'encoder.block.0.layer.0.DenseReluDense.wi.weight' in name: # Example layer
 
246
  # Define Gradio interface
247
  @spaces.GPU
248
  def predict(text):
249
+
250
  config = AutoConfig.from_pretrained("shorecode/t5-efficient-tiny-nh8-summarizer")
251
  model = AutoModelForSeq2SeqLM.from_config(config)
252
  #initialize_weights(model)
253
  tokenizer = AutoTokenizer.from_pretrained('shorecode/t5-efficient-tiny-nh8-summarizer')
254
+ inputs = tokenizer(text, padding='max_lenght', max_length=512, truncation=True)
255
  outputs = model(inputs)
256
  predictions = outputs.logits.argmax(dim=-1)
257
  return predictions.item()
258
 
259
 
260
  @spaces.GPU(duration=120)
261
+ def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
 
262
  def initialize_weights(model):
263
  for name, param in model.named_parameters():
264
  if 'encoder.block.0.layer.0.DenseReluDense.wi.weight' in name: # Example layer